電気設備工事共通仕様書

平成 29 年 2 月

首都高速道路株式会社

電気設備工事共通仕様書

第	1	章	総	則…	• • • • •		• • • •	 	 	 • • • •	• • • •	1
第	2	章	機器及び材	料・			• • • •	 	 	 		• 43
第	3	章	共 通 工	事・	• • • • •		• • • •	 	 	 • • •		• 47
第	4	章	屋内配線工	事・				 	 	 		. 58
第	5	章	屋外配線工事	• 構内	可電線別	路工事		 	 	 		123
第	6	章	接地工	事・				 	 	 • • • •		143
第	7	章	受変電設備工	事 ·				 	 	 • • • •		150
第	8	章	道路・建物電	気設備	計工事			 	 	 • • • •		159
第	9	章	通信設備工	事・				 	 	 		179
第]	1 0	章	交通管制設備	i工事			• • • •	 	 	 • • •		216
第]	l 1	章	ETC設備工	.事 ·	• • • • •		• • • •	 	 	 • • •		232
資料	斗編	i .						 	 	 		236

第1章 総 則

第1章総 則

第1節 一般 事項

1.1.1 適 用

- 1 電気設備工事共通仕様書(以下「共通仕様書」という。)は、首都高速道路株式会社(以下「当社」という。)が発注する電気設備工事(以下「工事」という。)に係る工事請負契約書(以下「契約書」という。)及び設計図書の内容について、統一的な解釈及び運用を図るとともに、その他必要な事項を定め、もって契約の適正な履行の確保を図るためのものである。
- 2 実施設計に係る事項については、当社制定の設計共通仕様書 (施設編) (以下「設計仕様書」という。) によるものとする。

1.1.2 用語の定義

1 契約書類

契約書及び設計図書をいう。

2 設計図書

図面、仕様書、工事請負現場説明書、現場説明に対する質問回答書及び金額を記載しない 設計書をいう。

3 図 面

入札等に際して、当社が示した設計図、当社から変更又は追加された設計図、設計図の基となる設計計算書等をいう。ただし、実施設計を含む工事にあっては、契約書類及び第11項に規定する監督職員の指示に従って作成され、当該監督職員が認めた実施設計の成果品の設計図を含むものとする。

4 仕様書

各工事に規定される特記仕様書と各工事に共通する共通仕様書を総称していう。

5 特記仕様書

共通仕様書を補足し、工事の施工に関する明細又は工事に固有の技術的要求を定める書類 をいう。

6 共通仕様書

各建設作業の作業順序、使用材料の品質、数量、仕上げの程度、施工方法等工事を施工する上で必要な技術的要求、工事内容を説明したもののうち、あらかじめ定型的な内容を盛り込み作成した書類をいう。

7 工事請負現場説明書

工事の入札等に参加するものに対して、当社が当該工事の契約条件等を説明するための書類をいう。

8 現場説明に対する質問回答書

工事請負現場説明書及び現場説明に関する入札参加者等からの質問書に対して、当社が回

答する書面をいう。

9 金額を記載しない設計書

設計書において、数量及び条件のみを明示した書類をいう。

10 発注者

首都高速道路株式会社をいう。

11 監督職員

契約書第9条第1項の規定に基づき、請負契約の履行を確保するための監督を行う者で、 次に定める「総括監督員」及び「現場監督員」を総称していう。

(1) 総括監督員

発注者が定め受注者に通知した者で、1.1.15.1に規定する権限を有する者とする。

(2) 現場監督員

主任監督員及び担当監督員を総称していう。

(3) 主任監督員

発注者が定め受注者に通知した者で、1.1.15.2に規定する権限を有する者とする。

(4) 担当監督員

発注者が定め受注者に通知した者で、1.1.15.3に規定する権限を有する者とする。

12 施工管理員

発注者が定め受注者に通知した者で、1.1.15.4に規定する権限を有する者とする。

13 検査員等

しゅん功検査、一部しゅん功検査、中間検査(以下「しゅん功検査等」という。)及び出来形部分検査を実施する者で、次に定める検査責任者及び検査員(以下「検査員等」という。)をいう。

- (1) しゅん功検査等にあっては、次に定める者をいう。
 - イ しゅん功検査等の検査責任者

工事検査室の長をいう。

ロ しゅん功検査等の検査員

イの検査の検査責任者が別に定める者をいう。

- (2) 出来形部分検査にあっては、次に定める者をいう。
 - イ 出来形部分検査の検査責任者

総括監督員をもって充てる。

ロ 出来形部分検査の検査員 主任監督員をもって充てる。

14 指 示

監督職員が受注者に対し、工事の施工上必要な事項について書面をもって示し、実施させることをいう。

15 承 諾

契約書類で明示した事項について、発注者若しくは監督職員又は受注者若しくは現場代理 人が書面により同意することをいう。

16 協議

書面により契約書類の協議事項について、発注者又は監督職員と受注者が対等の立場で合議し、結論を得ることをいう。

17 提 出

監督職員が受注者に対し、又は受注者が監督職員に対し工事の施工上必要な事項を記載した書面又はその他の資料を説明し、差し出すことをいう。

18 報 告

受注者が監督職員に対し、工事の状況又は結果について書面をもって知らせることをいう。

19 通 知

発注者又は監督職員と受注者又は現場代理人の間で、監督職員が受注者に対し、又は受注者が監督職員に対し、工事の施工に関する事項について、書面をもって知らせることをいう。

20 書 面

手書き、印刷物の伝達物をいい、発行年月日を記載し、署名又は押印したものを有効とする。ただし、電子データを電子メールにて提出することが可能と明記した書類については、電子データが書面に代わるものとする。なお、緊急を要する場合はファクシミリ又は電子メール等により伝達できるものとするが、後日有効な書面と差し替えるものとする。

21 立 会

契約書類に示された項目について、監督職員が臨場し内容を確認することをいう。

22 確 認

契約書に示された事項について、臨場若しくは関係資料により、その内容について契約書類との適合を確かめることをいう。

23 提 示

監督職員が受注者に対し、又は受注者が監督職員に対し工事に係わる書面又はその他の資料を示し、説明することをいう。

24 整備·保管

受注者が監督職員に確認等を受けた書類を、受注者の責任において、整理した状態で保管することをいう。

1.1.3 契約書類の解釈

- 1 契約書類は、相互に補完し合うものとし、そのいずれか一方に定めのある事項は、契約の履行を拘束する。
- 2 設計図書は、特記仕様書、工事請負現場説明書、現場説明に対する質問回答書、図面、共通仕様書、金額を記載しない設計書の順に優先適用する。

1.1.4 計量単位

国際単位系 (SI) を使用するものとする。なお、設計図書に非 SI 単位で表示されている場合は、SI 単位に読み替えるものとする。

1.1.5 日数の解釈

契約書類において使用する契約工期及びその他の日数は、契約書第1条第9項によるものとし、すべて暦日で示され、日曜日、国民の祝日に関する法律(昭和23年法律第178号)に規定する休日、年末年始の12月29日から翌年1月3日までの間、天候不良等による作業休止日等を含むものとする。

1.1.6 遵守すべき法令等

受注者は、当該工事に関する諸法令を遵守し、諸法令の適用及び運用は受注者の責任と費用において行わなければならない。

(1) 建設	2業法	(昭和 24 年	法律第 100 号)
(2) 下請	f代金支払遅延等防止法	(昭和 31 年	法律第 120 号)
(3) 労働	基準法	(昭和22年	法律第 49 号)
(4) 労働	的安全衛生法	(昭和47年	法律第 57 号)
(5) 職業	安定法	(昭和 22 年	法律第 141 号)
(6) 作業	连環境測定法	(昭和50年	法律第 28 号)
(7) じん	肺法	(昭和35年	法律第 30 号)
(8) 建設	対働者の雇用の改善等に関する法律	(昭和51年	法律第 33 号)
(9) 出入	国管理及び難民認定法	(平成3年	法律第 94 号)
(10) 道路	路法	(昭和 27 年	法律第 180 号)
(11) 道路	路交通法	(昭和35年	法律第 105 号)
(12) 道路	路運送法	(昭和 26 年	法律第 183 号)
(13) 道路	路運送車両法	(昭和 26 年	法律第 185 号)
(14) 砂路	防法	(明治 30 年	法律第 29 号)
(15) 地方	すべり等防止法	(昭和 33 年	法律第 30 号)
(16) 河川	川法	(昭和 39年	法律第 167 号)
(17) 海岸	学 法	(昭和31年	法律第 101 号)
(18) 港湾	弯法	(昭和 25 年	法律第 218 号)
(19) 港貝	則法	(昭和23年	法律第 174 号)
(20) 漁洋	港漁場整備法	(昭和 25 年	法律第 137 号)
(21) 下7	水道法	(昭和 33 年	法律第 79 号)
(22) 航空	空法	(昭和27年	法律第 231 号)

(23)	公有水面埋立法	(大正 10 年	法律第 57 号)
(24)	軌道法	(大正 10 年	
(24) (25)		(昭和 26 年	法律第 249 号)
	森林法 環境基本法	(平成5年	
(26)			
(27)	火薬類取締法	(昭和25年	法律第 149 号)
(28)	大気汚染防止法	(昭和43年	
(29)	騒音規制法 人格 人名	(昭和43年	
(30)	水質汚濁防止法	(昭和 45 年	法律第 138 号)
(31)	湖沼水質保全特別措置法	(昭和 59 年	
(32)	振動規制法	(昭和51年	法律第 64 号)
(33)	廃棄物の処理及び清掃に関する法律	(昭和 45 年	法律第 137 号)
(34)	資源の有効な利用の促進に関する法律	(平成3年	法律第 48 号)
(35)	文化財保護法	(昭和 25 年	法律第 214 号)
(36)	砂利採取法	(昭和43年	法律第 74 号)
(37)	電気事業法	(昭和39年	法律第 170 号)
(38)	電気工事士法	(昭和35年	法律第 139 号)
(39)	消防法	(昭和23年	法律第 186 号)
(40)	測量法	(昭和24年	法律第 188 号)
(41)	建築基準法	(昭和25年	法律第 201 号)
(42)	電波法	(昭和25年	法律第 131 号)
(43)	電気通信事業法	(昭和59年	法律第 86 号)
(44)	有線電気通信法	(昭和28年	法律第 96 号)
(45)	電気用品安全法	(昭和36年	法律第 234 号)
(46)	雇用保険法	(昭和49年	法律第 116 号)
(47)	労働者災害補償保険法	(昭和22年	法律第 50 号)
(48)	健康保険法	(昭和11年	法律第 70 号)
(49)	中小企業退職金共済法	(昭和34年	法律第 160 号)
(50)	酸素欠乏症等防止規制	(昭和47年	労働省令 42 号)
(51)	都市公園法	(昭和31年	法律第 79)
(52)	建設工事に係る資材の再資源化等に関する法律	(平成 12 年海	法律第 104 号)
(53)	駐車場法	(昭和32年	法律第 106 号)
(54)	個人情報の保護に関する法律	(平成 15 年	法律第 57 条)
(55)	公共工事の品質確保の促進に関する法律	(平成 17 年	法律第 18 号)
(56)	公共工事の入札及び契約の適正化の促進に関する法	(平成 12)	年法律第 127 号)
(57)	騒音障害防止のためのガイドライン	(平成4年	

(平成 21 年 4 月)

(58) 手すり先行工法に関するガイドライン

(59) 警備業法 (昭和 47 年 法律 117 号)

(60) 国等による環境物品等の調達の推進等に関する法律 (平成 12年 法律 100号)

(61) 放送法 (昭和 25 年 法律 132 号)

(62) 航路標識法 (昭和24年 法律99号)

(63) 著作権法 (昭和 32 年 法律 39 号)

受注者は、諸法令を順守し、これに違反した場合、発生するであろう責務が、発注者に及 ばないようにしなければならない。

受注者は、当該工事の設計図書及び契約そのものが第1項の諸法令に照らし、不適当であったり、矛盾していることが判明した場合には直ちに監督職員に通知し、その確認を請求しなければならない。

1.1.7 書類の提出

- 1 受注者は、提出書類を「工事関係様式集」及び「電子納品等運用ガイドライン」に基づいて、提出しなければならない。これに定めのないものは、監督職員の指示する様式によらなければならない。
- 2 受注者は、書類を提出するときは、原本により行うものとし、原則として直接持参し、 提出しなければならない。この場合において、次に掲げる書類以外の書類は、監督職員に 提出するものとする。
 - (1) 請負代金額に係る書類
 - (2) 請負代金代理受領承諾書
 - (3) 遅延利息請求書
 - (4) 監督職員に関する措置請求に係る書類
 - (5) その他現場説明の際に指定した書類

1.1.8 受注者相互の協力

- 1 受注者は、監督職員と相互に協力し、適切かつ合理的な方法により工事を安全かつ速やかに完成しなければならない。
- 2 受注者は、契約書第 2 条の規定に基づき隣接工事又は関連工事の請負業者と相互に協力 し、施工しなければならない。また、関連のある電力、通信、ガス施設等の工事及び国、 都、県、区市町村又はその他の公共団体の施工する関連工事が同時に施工される場合にも、 これら関係者と相互に協力しなければならない。

1.1.9 関係官公署等への手続き等

- 1 受注者は、工事期間中、関係官公署その他の関係機関及び地元住民と緊密な連絡及び十 分な協調を保たなければならない。
- 2 受注者は、工事の施工に当り、法令若しくは条例又は設計図書の定めにより、受注者が

行うべき施工上必要な関係官公署への届出等を行うときは、自らの責任と費用により迅速 に処理しなければならない。ただし、これによることが困難な場合は、監督職員の指示を 受けなければならない。

- 3 受注者は、前項に規定する届出等に際しては、事前にその内容を記載した文書により報告し、監督職員の指示があればそれに従うものとする。
- 4 受注者は、常に届出又は許可の条件を把握して工事を施工するとともに、その実施状況 を随時報告し、監督職員の指示があればそれに従うものとする。
- 5 受注者は、地域住民から工事の施工に対する理解と協力を得られるよう努めるとともに、 地域住民との間に紛争が生じないように努め、苦情があった場合は、誠意をもってその解 決に当たらなければならない。また、その内容について後日紛争とならないよう文書で確 認する等明確にしておくとともに、状況を随時報告し、監督職員の指示があればそれに従 うものとする。
- 6 受注者は、国、都、県、区市町村その他の公共団体及び地域住民等と工事の施工上必要な交渉を、受注者の行うべきものについては自らの責任において行うものとする。受注者は、交渉に先立ち、事前報告の上、これらの交渉に当たっては誠意をもって対応しなければならない。

1.1.10 資料作成作業の協力

- 1 受注者は、監督職員の指示に従い、当社が行う官公署への協議に必要な資料の作成作業を行わなければならない。
- 2 受注者は、監督職員が、工事に必要な施工関係資料、統計資料等の提出を求めた場合には、資料等を作成し、提出しなければならない。
- 3 受注者は、発注者が自ら又は発注者が指定する第三者が行う調査及び試験に対して、監 督職員の指示によりこれに協力しなければならない。
- 4 受注者は、当該工事が発注者の実施する公共事業労務費調査の対象工事となった場合には、次の各号に掲げる協力をしなければならない。また、工期経過後においても同様とする。
 - (1) 調査票等に必要事項を正確に記入し、提出する等必要な協力をしなければならない。
 - (2) 調査票等を提出した事業所を当社が、事後に訪問して行う調査・指導の対象になった場合には、その実施に協力しなければならない。
 - (3) 正確な調査票等の提出が行えるよう、労働基準法等に従い就業規則を作成すると共 に賃金台帳を調製・保存する等、日頃より使用している現場労働者の賃金時間管理を適 切に行わなければならない。
 - (4) 対象工事の一部について下請契約を締結する場合には、当該下請負工事の受注者(当該下請工事の一部に係る二次以降の下請負人を含む。)が前号と同様の義務を負う旨を 定めなければならない。

- 5 受注者は、当該工事が当社の実施する施工実態調査等の対象工事となった場合には、調 査等の必要な協力をしなければならない。また、工期経過後においても同様とする。
- 6 前1~5項に定める資料等の作成に要する費用は、受注者の負担とする。

1.1.11 一括委任又は一括下請負の禁止

契約書第6条に規定する「主たる部分又は他の部分から独立してその機能を発揮する工作物の工事」については、設計図書に基づき発注者が判断するものとする。

1.1.12 受任者又は下請負人の通知

受注者は、契約書第7条に基づき総括監督員が受任者又は下請負人の通知の請求をした場合は、下請負人(受任者)通知書を提出しなければならない。

1.1.13 工事の下請負

受注者は、下請負に付する場合には、次の各号に掲げる要件をすべて満たさなければならない。

- (1) 受注者が、工事の施工につき総合的に企画、指導及び調整するものであること。
- (2) 下請負者が、当社の工事指名競争参加資格者である場合には、指名停止期間中でないこと。
- (3) 下請負者は、当該下請負工事の施工能力を有すること。

1.1.14 施工体制台帳等

- 1 受注者は、工事を施工するために下請契約を締結した場合、国土交通省令及び「施工体制台帳に係る書類の提出について」(平成13年3月30日付け国官技第70号、国営技第30号)に従って記載した施工体制台帳を作成し、工事現場に備えるとともに、工事着手までに、施工体制台帳等通知書を提出しなければならない。
- 2 第1項の受注者は、国土交通省令及び「施工体制台帳に係る書類の提出について」(平成 13年3月30日付け国官技第70号、国営技第30号)に従って各下請負者の施工の分担関 係を表示した施工体系図を作成し、工事関係者が見やすい場所及び公衆が見やすい場所に 掲げなければならない。
- 3 第1項の受注者は、監理技術者、主任技術者(下請負者を含む)及び元受注者の専門技 術者(専任している場合のみ)に、工事現場内において、工事名、工期、顔写真、所属会 社名及び社印の入った名札等を着用させなければならない。
- 4 第1項の受注者は、施工体制台帳及び施工体系図に変更が生じた場合は、そのつどすみ やかに提出しなければならない。

1.1.15 監督職員の権限及びその行使

1 総括監督員

- (1) 総括監督員は、契約書第9条第2項に規定する権限を有する。
- (2) 総括監督員は、決定、指示又は協議において、当社の判断を行う者である。
- (3) 総括監督員は、第三者に現場監督を委任する事ができる。この場合においては、受注者に第三者の氏名と権限を通知するものとする。現場監督を委任した第三者を変更したときも同様とする。
- (4) 総括監督員が有する権限及び行為は、(2)及び(3)に掲げる事項のほか、次の各号に掲げるものとする。
 - イ 契約書第2条の規定に基づく関連工事の調整
 - 契約書第7条の規定に基づく受任者又は下請負人の通知の請求
 - n 契約書第10条第1項の規定に基づく通知の受理
 - = 契約書第11条の規定に基づく履行報告の受理
 - * 契約書第 15 条第 1 項から第 6 項及び第 9 項から第 10 項の規定に基づく支給材料及 び貸与品の取扱い
 - へ 契約書第16条第4項の規定に基づき受注者に代わって行う物件の処分又は工事用地 等の修復若しくは取片付け
 - ト 契約書第16条第5項の規定に基づく受注者のとるべき措置の期限、方法等の決定
 - チ 契約書第18条第3項の規定に基づく調査結果の通知
 - リ 契約書第20条の規定に基づく工事の全部又は一部の施工の一時中止の通知
 - ヌ 契約書第23条第2項の規定に基づく工期変更の受発注者間協議開始日の通知
 - ル 契約書第24条第2項の規定に基づく請負代金額の変更の受発注者間協議開始日の通知
 - ヲ契約書第25条第8項の規定に基づく請負代金額の変更の受発注者間協議開始日の通知
 - ワ 契約書第29条第1項の規定に基づく不可抗力による損害の報告受領
 - カ 契約書第29条第2項の規定に基づく不可抗力による損害の状況確認及び結果の通知
 - 3 契約書第30条第2項の規定に基づく設計図書の変更に関する協議開始日の通知
 - タ 契約書第33条第1項及び第2項の規定に基づく工事目的物の部分使用承諾請求
 - √ 契約書第37条第2項の規定に基づき行われる請求の受理
 - y 契約書第37条第3項の規定に基づき行う検査、認定及び通知
 - ッ 契約書第46条第2項の規定に基づく破壊検査

2 主任監督員

- (1) 総括監督員は、工事の施工についての監督のため主任監督員を定めるものとする。 主任監督員は、総括監督員の権限及び行為とされる事項のうち、総括監督員が必要と認 めた権限を有するものとする。
- (2) 主任監督員は、契約書類の定めるところにより、現場代理人等に指示、承諾又は協

議を行うことができる。

- (3) 主任監督員は、契約書類において現場監督員の立会の上施工するものと指定された 工事のほか、主任監督員が必要と認める工事についても随時立会、又は担当監督員に命じて立会わせることができる。
- (4) 主任監督員が有する権限及び行為は、(2)及び(3)に掲げる事項のほか、次の各号に掲げるものとする。
 - イ 契約書第2条の規定に基づく関連工事の調整
 - 契約書第7条の規定に基づく受任者又は下請負人の通知の請求
 - n 契約書第9条第2項に掲げる権限
 - ニ 契約書第9条第4項に掲げる行為
 - * 契約書第9条第5項に掲げる受領行為
 - へ 契約書第11条の規定に基づく履行報告の受理
 - ト 契約書第13条第2項、第3項及び第4項に掲げる工事材料の検査等
 - チ 契約書第14条第1項、第2項、第3項及び第5項に掲げる立会
 - リ 契約書第14条第4項に掲げる請求
 - ヌ 契約書第14条第6項に掲げる行為
 - ル 契約書第15条第2項に掲げる検査
 - ヲ 契約書第18条第2項に掲げる調査
 - ワ 契約書第26条第1項、第2項及び第3項に掲げる権限
 - カ 契約書第33条に係わる出来形検査
 - ョ 契約書第33条第1項及び第2項の規定に基づく工事目的物の部分使用承諾請求
 - タ 契約書第47条第2項及び第3項の提示及び通知

3 担当監督員

- (1) 総括監督員は、工事の施工についての監督のため担当監督員を定めるものとする。 担当監督員は、総括監督員又は主任監督員の権限及び行為とされる事項のうち、総括監督員が必要と認めた権限を有するものとする。
- (2) 担当監督員は、主任監督員の指示に基づき行う契約書類に定める検査及び立会(確認を含む)を行うことができる。
- (3) 担当監督員は、主任監督員の指示に基づき、工事現場において、出来形、品質、規格、数量等について必要な指示を行うことができる。
- (4) 担当監督員の権限及び行為は、(2)及び(3)に掲げる事項のほか、主任監督員の権限と行為とされる事項のうち、次の各号に掲げるものを主任監督員の指示に基づき行うものとする。
 - イ 契約書第9条第2項第3号に掲げる権限
 - □ 契約書第13条第2項、第3項及び第4項に掲げる工事材料の検査等
 - n 契約書第14条第1項、第2項、第3項及び第5項に掲げる立会

- ニ 契約書第14条第4項に掲げる請求
- * 契約書第14条第6項に掲げる行為
- へ その他主任監督員が必要と認める事項

4 施行管理員

主任監督員は、担当監督員を補助させるために施行管理員を定め、前項の(2)、(3) 及び(4)に規定する担当監督員の行為を行使させることができるものとする。

- 5 監督職員は、その権限を行使するときは、「工事打合せ簿」により行うものとする。ただし、緊急を要する場合その他の理由により、受注者に対して口頭による指示又は承諾を行ったときは、受注者は、当該指示又は承諾に従わなければならない。
- 6 前項の口頭による指示又は承諾は、当該指示又は承諾の日から7日以内に、工事打合せ 簿により、監督職員と受注者の間において確認されなければならない。

1.1.16 現場代理人及び主任技術者等

- 1 受注者は、現場代理人、専任の主任技術者(以下「主任技術者」という。)又は専任の監理技術者(以下「監理技術者」という。)、専門技術者、総括安全衛生監理者、統括安全衛生責任者、専任の元方安全衛生管理者(以下「元方安全衛生管理者」という。)を定め、契約締結後14日以内に、「現場代理人等選定通知書」に経歴書を添えて提出しなければならない。
- 2 受注者は、前項の元方安全衛生管理者がやむを得ない事情により不在となる等、その職務を遂行できないときは、その職務を代行する者(以下「元方安全衛生管理代理者」という。)をあらかじめ定め、契約締結後14日以内に前項の「現場代理人等選定通知書」により提出しなければならない。
- 3 契約書第10条の規定に基づき設置する現場代理人、主任技術者又は監理技術者、総括安全衛生監理者、統括安全衛生責任者、元方安全衛生管理者及び元方安全衛生管理代理者は受注者に所属する者とする。ただし、統括安全衛生責任者は、1.5.2の第6項に該当する場合は、この限りではない。なお、受注者に所属する者とは、受注者と直接的かつ恒常的な雇用関係にある者で派遣社員及びアルバイトを除く。
- 4 受注者は、入札前に一般競争入札における競争参加資格確認資料又は公募型指名競争入 札における技術資料(併せて以下「技術資料」という。)を提出した工事にあっては現場 代理人、主任技術者又は監理技術者を、技術資料に記載した配置予定技術者の中から選定 しなければならない。

なお、特殊な事情により配置予定技術者の中から選定することが困難な場合にあっては、「現場代理人等の変更承諾申請書」を提出し、総括監督員の承諾を得て技術資料に記載した技術者と同等以上の施工経験を有する者を選定するものとする。また、選定後に技術資料に記載した者以外のものに特殊な事情により変更しようとする場合にあっても、変更前の技術者と同等以上の施工経験を有する者を選定したうえで「現場代理人等の変更承諾申

請書」を提出し、総括監督員の承諾を得なければならない。

ここでの特殊な事情とは、次に揚げる場合とし、(2)、(3)の交代の時期は、工事の継続性、品質確保等に支障が生じないようにしなければならない。

- (1) 病気、死亡、退職、出産、育児、介護等、やむを得ない場合
- (2) 受注者の責によらない理由により工事中止または工事内容の大幅な変更が発生し、 工期が延長された場合
- (3) 契約工期が多年に及ぶ場合
- 5 受注者は、第1項の現場代理人等を変更したときは、変更後14日以内に「変更選定通知書」を提出しなければならない。
- 6 受注者は、第1項の主任技術者又は監理技術者及び専門技術者の選定に当たっては、建 設業法第26条の規定によるほか、軽微な工事を除き、次のいずれかの資格を有する者を 選定しなければならない。
 - (1) 現場代理人

建設業法第 19 条の 2 に規定する者。なお、その者は原則として、他の工事との兼任 を認めないものとする。

(2) 主任技術者

専任の主任技術者については、次のいずれかに該当する者であること。

- イ 建設業法 (昭和 24 年法律第 100 号) 第 27 条及び建設業法施行令 (昭和 31 年政令 第 273 号) 第 27 条の 3 の規定による技術検定のうち、1 級又は 2 級の電気工事施工管 理に関する検定種目に合格した者
- ロ 技術士法(昭和58年法律第25号)第6条及び技術士法施行規則(昭和59年総理府令第5号)第11条の規定による第二次試験のうち、建設部門又は電気電子部門に関する技術部門に合格し、かつ、同法第32条の規定により技術士登録簿に登録を受けた者
- ハ 電気工事士法(昭和35年法律第139号)第6条及び電気工事士法施行令(昭和35年政令第260号)第7条の規定による試験に合格し、かつ、3年以上の実務経験を経た者
- 二 電気事業法(昭和39年法律第170号)第45条及び電気事業法の規定に基づく主任 技術者の資格等に関する省令(昭和40年通商産業省令第52号)第6条の規定による 試験に合格し、かつ、5年以上の実務経験を経た者
- (3) 監理技術者

建設業法第26条第2項に規定する技術者

(4) 専門技術者

建設業法第26条の2に規定する技術者

7 監理技術者の選定に当たっては、監理技術者資格者証を交付されている者のうちから選 ばなければならない。また、必ず、監理技術者資格者証を携帯しなければならず、監督職 員から提示を求められた時は、これに従わなければならない。

- 8 受注者は、第1項の総括安全衛生監理者、統括安全衛生責任者及び元方安全衛生管理者 並びに第2項の元方安全衛生管理代理者の選定に当たっては、次に掲げる者を選定しなけ ればならない。
 - (1) 総括安全衛生監理者

受注者から店社において受注工事現場の安全衛生について統括安全衛生責任者の指導・監督する権限を与えられた者

(2) 統括安全衛生責任者

労働安全衛生法第 15 条に規定する統括安全衛生責任者 (当該場所においてその実施 を統括管理する者)

(3) 元方安全衛生管理者

労働安全衛生法第 15 条の 2 に規定する元方安全衛生管理者で、工事の安全衛生に係 わる法規及び実務に精通した者

(4) 元方安全衛生管理代理者

労働安全衛生法第 15 条の 2 に規定する元方安全衛生管理者と同等の資格及び権限を 有し、工事の安全衛生に係わる法規及び実務に精通した者

1.1.17 専任技術者

- 1 受注者は、1.1.16 現場代理人及び主任技術者等の規定のほかに、設計図書に定めのある場合は、専任技術者を定め、当該工種の着手前に、専任技術者選定通知書を提出しなければならない。なお、当該専任技術者が複数の工種の資格を有しているときは、これらを兼ねることができるものとする。
- 2 受注者は、専任技術者を、その担当する工種の施工期間中現場に常駐させ、品質及び出来形管理の向上を図らなければならない。
- 3 専任技術者の資格は、共通仕様書の各章で定めているそれぞれの資格を有するものとする。

1.1.18 履行報告

受注者は、契約書第 11 条の規定に基づき契約の履行を報告しなければならない。この場合、監督職員より特別の指示がない限り 1.4.2 の第 1 項、1.4.3 及び 1.4.9 をもって履行報告に代えることができるものとする。

1.1.19 工事の着工

- 1 受注者は、設計図書に定めのある場合を除き契約締結後30日以内に着工しなければならない。なお、受注者は、工事の着工目前に着工届を提出しなければならない。
- 2 着工日とは、工事を開始する日であって、受注者が工事のため現地において事務所の建

設、測量又は施工計画書の作成を開始する日をいう。ただし、実施設計を含む工事にあっては、その設計を開始する日をいう。

1.1.20 作業日及び時間帯

- 1 受注者は、設計図書に定めがある場合を除き、夜間、土曜、日曜、祝日(振替休日を含む。)及び12月29日から翌年1月3日までの期間に作業を行ってはならない。やむを得ず作業を行う必要がある場合は、1.4.11に定める「工事週報・立会検査願」により提出しなければならない。ただし、緊急を要する作業は、この限りではない。
- 2 受注者は、首都高速道路を規制して施工する場合の作業日及び時間帯について、設計図書に定めのない場合は、監督職員の指示を受けなければならない。

1.1.21 工事用地等の使用

- 1 受注者は、契約書第16条第1項に規定する工事用地等を無償で使用することができる。 ただし、使用途中において当社が返還を要求したときは、これに従わなければならない。
- 2 受注者は、前項の工事用地等を専ら工事の施工の目的として使用しなければならない。
- 3 受注者は、当社が権限を有する土地又は物件を使用するときは、「仮設建物等設置承諾申請書」を提出し、承諾を得なければならない。ただし、使用途中において、その使用方法の変更又は一部返還を監督職員が指示したときは、受注者は、これに従わなければならない。

1.1.22 受注者が確保すべき用地等

- 1 設計図書において受注者が確保するものとされる用地及び工事の施工上受注者が必要とする用地については、自ら準備し、確保するものとする。この場合において、工事の施工上必要とする用地とは、営繕用地(受注者の現場事務所、宿舎、駐車場)及び専ら受注者が使用する用地等に伴う借地をいう。
- 2 受注者は、工事の施工に必要な営繕用地等の借受けができないことを理由として、発注者に対し損害賠償を請求することができない。
- 3 受注者は、工事の施工上必要な土地等を第三者から借用又は買収したときは、その土地 等の所有者との間の契約を遵守し、その土地等の使用による苦情又は紛争が生じないよう に努めなければならない。

1.1.23 条件変更等の処理

- 1 受注者は、契約書第18条第1項に規定する事実を発見し、当社に確認を請求するときは、「工事打合せ簿」にその内容を記載して提出しなければならない。
- 2 受注者は、監督職員の指示に従い、自らの費用により次に掲げる作業を行わなければならない。

- (1) 契約書第18条第4項各号に規定する工事内容の変更又は設計図書の変更を行うために必要な図面の作成(測量図を含む。)、数量算出、試験結果等の資料作成及び整理
- (2) 前号の資料作成に必要な簡易な構造物の設計
- (3) その他必要資料及び前2号に準ずる資料の作成
- 3 条件変更等による工事の変更等については、「工事請負契約における設計変更ガイドライン (首都高速道路株式会社)」を遵守して行うものとする。

1.1.24 受注者の異議申立書の提出

- 1 受注者又は現場代理人は、発注者又は監督職員からの指示に異議があるときは、10日以内に、発注者又は監督職員に異議申立書を提出することができる。
- 2 前項の異議申立書の提出があったときは、発注者又は監督職員は、その申立事項について、速やかに受注者又は現場代理人と協議しなければならない。
- 3 受注者は、前2項の異議申立書を提出した場合にあっても、1.1.25 により監督職員が工事の中止を指示したときを除き、工事の全部又は一部を中止してはならない。
- 4 受注者又は現場代理人が、異議申立書を第1項に定める期間内に監督職員に提出しなかったときは、指示を承諾したものとみなす。

1.1.25 工事の中止

- 1 発注者は、契約書第20条の規定に基づき次の各号に該当する場合においては、受注者に対してあらかじめ書面をもって通知した上で、必要とする期間、工事の全部又は一部の施工について一時中止を命じることができる。
 - (1) 埋蔵文化財の調査、発掘の遅延及び埋蔵文化財が新たに発見され、工事の続行が不適当又は不可能となった場合。
 - (2) 関連する他の工事の進捗が遅れたため工事の続行を不可能と認めた場合。
 - (3) 工事着手後、環境問題等の発生により工事の続行が不適当又は不可能となった場合。
 - (4) 第三者、受注者、使用人及び監督職員の安全のため必要があると認める場合。
 - (5) 受注者が契約書類又は監督職員の指示に従わないとき。
- 2 受注者は、工事中止期間において、工事の出来形部分、工事現場に搬入した工事材料、 工事仮設物、工事に必要な機械器具等工事現場に存在するすべてのものについて、監督職 員と協議の上、その工事の維持保全に努めるとともに、工事の続行に備えて必要な措置を 講じなければならない。
- 3 工事の一時中止については「工事一時中止ガイドライン(首都高速道路株式会社)」を遵 守して行うものとする。

1.1.26 スライド条項の適用

1 契約書第25条第1項から第4項までの規定(以下「スライド条項」という。)に基づく

請負代金額の変更(以下「スライド」という。)は、次項から第7項までの定めにより、 行うものとする。

2 賃金又は物価の変動

スライド条項にいう賃金又は物価の変動とは、当該工事場所のある都県における建設労働者の賃金水準、建設資材の価格、建設機械及び仮設材の損料、賃料、運送料等に関する価格水準の変動をいう。

3 請求の方法

- (1) 発注者又は受注者(以下「請求者」という。)が賃金又は物価の変動状況、当該工事の残工事量等から勘案し、適当と判断した日にスライドの請求を行うことができる。ただし、請負契約締結の日又は直前のスライド条項に基づく請負代金額の変更を請求した日から12ヶ月を経過した後であって、残工事の工期が当該スライド請求をする日から2ヶ月以上あるときでなければならない。
- (2) 前号の請求は、当該請求者が「賃金又は物価の変動に基づく請負代金額の変更協議書」を相手方に提出することにより行う。

4 適用の基準日

スライド条項の規定を適用する基準日は、契約書第 25 条第 3 項の規定に基づき、請求者から請求のあった日とする。

5 残工事量の算定

変動前残工事代金額及び変動後残工事代金額の算定の基礎となる残工事量は、契約数量に 対する基準日までの工事出来形部分(施工済数量)を基準日直前の実施工程表を用いて確 認し、契約数量から差し引いて算出する。

6 残工事量の認定

- (1) 変動前残工事代金額の算定の基礎となる残工事量の認定については、スライドの請求があった日から起算して 14 日以内で発注者が受注者と協議して定める日において、総括監督員が認定するものとする。この場合において、受注者の責めにより遅延していると認められる工事量は残工事量に含めず、基準日までの工事出来形部分に含めるものとする。
- (2) 前号の残工事量の認定のために必要となる基準日までの工事出来形部分の確認は、「残工事数量確認書」により、受注者の立会の上、現場監督員が行う。この場合において、必要な資料等の作成は、受注者が行うものとする。

7 スライドの協議

- (1) スライドの協議は、残工事数量が最終確定したときに行う。
- (2) スライド額は、変動前残工事代金額と変動後代金額との差額のうち、変動前残工事 代金額の15/1000を超える額とする。

8 スライド額の支払

スライド額の支払は、しゅん功代金の支払時に合わせて行う。この場合において、スライ

ド額の支払を行う者が受注者であるときは、しゅん功代金と相殺することができる。

1.1.27 不可抗力による損害

契約書第 29 条第 1 項に規定する「設計図書で定めた基準」とは、次の各号に掲げるものをいう。

- (1) 降雨に起因する場合で、次のいずれかに該当する場合
 - イ 24 時間雨量(任意の連続 24 時間における雨量をいう。) が 80 mm以上のとき。
 - ロ 1時間雨量(任意の60分における雨量をいう。)が20mm以上のとき。
 - ハ その他設計図書で定める基準
- (2) 強風に起因する場合

最大風速(10分間の平均風速で最大のもの)が15m/秒以上あった場合。

(3) 地震、津波、高潮及び豪雪に起因する場合

地震、津波、高潮及び豪雪により生じた災害にあっては、周囲の状況により判断し、 相当の範囲にわたって、他の一般物件にも被害を及ぼしたと認められる場合。

1.1.28 損害範囲の認定

契約書第29条第2項に規定する「受注者が善良な管理者の注意義務を怠ったことに基づくもの」とは、契約書第26条及び本章5節に規定する予防措置を行ったと認められないもの及び災害の一因が施工不良等受注者の責めによるとされるものをいう。

1.1.29 工事のしゅん功

- 1 受注者は、工事が完成したときは、契約書第31条第1項の規定により、直ちに「しゅん 功通知書」を提出しなければならない。
- 2 工事のしゅん功日とは工事が完成した日をいい、工事の完成とは次に掲げる事項の完成 及び完了をいう。
 - (1) 設計図書に定めるすべての工事が完成していること。
 - (2) 契約書第17条第1項に基づく改造が完了していること。
 - (3) 仮設物の撤去、跡片付け、整地、清掃等が完了していること。
 - (4) 次に掲げる書類等の整理が完了し、しゅん功図書については電子納品等運用ガイドラインに基づき完了していること。
 - イ 契約書(写し)及び工事請負現場説明書(写し)
 - ロ 金額を記載しない設計書(写し)及び図面
 - ハ 施工計画書、作業計画書及び実施工程表
 - ニ 工事打合せ簿
 - ホ 工事週報
 - へ 材料検査に関する書類

- ト 支給材料及び貸与品に関する書類
- チ 原寸及び仮組立に関する書類
- リ 出来形図表
- ヌ 現場検査カード
- ル 工事写真
- ヲ 材料計算書
- ワ 設計計算書
- カ しゅん功図書
- ョ 工事完了明細報告書
- タ 管理カード
- レ その他検査に必要な書類、記録等
- 3 契約書第42条第3項に規定する遅延日数の算定は、次式によるものとする。なお、不合格の通知日及び修補完了通知書受領日は、それぞれ契約書第31条第2項及び第6項に規定するものをいう。遅延日数=(しゅん功通知書受領日-契約工期末日)+(修補完了通知書受領日-不合格の通知日)
- 4 工事完了明細報告書の作成

受注者は、工事が完成したときは当社制定の「工事完了明細報告書作成マニュアル(受注者用)」に基づき自らの費用により工事完了明細報告書を作成し、監督職員の指示日までに電子データで提出しなければならない。この場合において、受注者は工事完了明細報告書の作成を第三者に委託、または請負わせてはならない。ただし、工事完了明細報告書が不要な場合は、監督職員からの指示を行う。

工事完了明細報告書は「電子納品等運用ガイドライン」の対象外とする。

1.1.30 部分使用

- 1 部分使用の請求及び承諾
 - (1) 発注者が契約書第33条第1項の規定により工事目的物の全部又は一部を使用しようとするときは、「部分使用承諾請求書」により受注者に承諾を求めることができる。
 - (2) 受注者は、前号の承諾を求められたときは、特段の理由がない限り「部分使用承諾書」により承諾しなければならない。
- 2 部分使用の検査
 - (1) 前項により受注者が部分使用を承諾したときは、現場監督員は、受注者の立会の上、 当該工事目的物の出来形検査を行うものとする。なお、当該検査に合格した場合においても、契約書第17条及び第31条の規定は、適用される。
 - (2) 受注者は、前号の検査において現場監督員から修補が指示されたときは、直ちに自らの責任と費用により修補を行わなければならない。
 - (3) 受注者は、当該検査に必要な資料、工事記録写真等を整備するとともに、必要な人

員、機材等を提供しなければならない。

- (4) 現場監督員は、第三者に工事目的物の部分使用をさせようとするときは、第 1 号の検査に当該第三者を立会わせることができる。
- 3 受注者は、前項の検査の完了後、直ちに当該工事目的物を使用できる状態にしなければ ならない。
- 4 他者の工事に係る工事目的物を部分使用する場合
 - (1) 受注者は、監督職員から他者の工事に係る工事目的物の部分使用を指示されたときは、その使用部分を善良な管理者の注意をもって使用しなければならない。
 - (2) 受注者は、前号の部分使用に当たり、その責めにより工事目的物に損害を与えたときは、その損害を賠償しなければならない。

1.1.31 保険の付保及び事故の補償

- 1 受注者は、雇用保険法、労働者災害補償保険法、健康保険法及び中小企業退職金共済法 の規定により、雇用者等の雇用形態に応じ、雇用者等を被保険者とするこれらの保険に加 入しなければならない。
- 2 受注者は、雇用者等の業務に関して生じた負傷、疫病、死亡及びその他の事故に対して 責任をもって適正な補償をしなければならない。
- 3 受注者は、建設業退職金共済制度に加入し、その掛金収納書の写しを工事契約締結後 1 ヶ月以内に提出しなければならない。

1.1.32 建築限界の確保

受注者は、足場工、支保工、防護工等を施工するときは、関係法令等に定める建築限界を侵してはならない。ただし、関係管理者の許可を得たときには、この限りではない。

1.1.33 文化財の保護

- 1 受注者は、工事の施工に当たっては、文化財の保護に十分注意し、使用人等に文化財の 重要性を十分認識させ、工事中に文化財を発見したときは、直ちに工事を中止し、報告す るとともに、監督職員の指示に従わなければならない。
- 2 受注者が、工事の施工に当たり、文化財その他の埋蔵物を発見した場合は、当社との契約に係る工事に起因するものとみなし、当社が、当該埋蔵物の発見者としての権利を有するものとする。

1.1.34 工事内容等の公表

受注者は、工事に関する事項について公表しようとするときは、あらかじめ書面により、 工事施工中においては総括監督員の、工事完成後においては当社が定める者の承諾を得な ければならない。

1.1.35 しゅん功図書

- 1 受注者は、工事が完成したときは、当社制定「電子納品等運用ガイドライン」に基づき しゅん功図書を作成し、提出しなければならない。ただし、設計図書にしゅん功図書の作 成方法について、特別の定めのある場合は、その定めに従わなければならない。
- 2 前項の規定にかかわらず、当社が完成した工事目的物を第三者に引き渡すため、しゅん 功図書の作成方法を設計図書に定めるとき又は監督職員が指示したときは、受注者は、そ の指示に従わなければならない。

1.1.36 工事カルテの作成及び登録

受注者は、受注時又は変更時において工事請負代金額が 500 万円以上の工事について、 工事実績情報システム (CORINS) に基づき、受注・変更・完成・訂正時に工事実績情報と して「工事カルテ」を作成し、監督職員の確認を受けたうえ、受注時は契約後、土曜日、 日曜日、祝日等を除き 10 日以内に、登録内容の変更時には変更があった日から土曜日、 日曜日、祝日等を除き 10 日以内に完成時は、工事完成後 10 日以内に、訂正時は適宜登録 機関に登録申請をしなければならない。また、登録機関発行の「工事カルテ受領書」が受 注者に届いた際には、その写しを直ちに提出しなければならない。なお、変更時と完成時 の間が 10 日間に満たない場合は、変更時の提出を省略できるものとする。

1.1.37 建設副産物

- 1 受注者は、建設副産物適正処理推進要綱(国土交通事務次官通達 平成14年5月30日)、 再生資源の利用の促進について(建設大臣官房技術審議官通達 平成3年10月25日)、 建設汚泥の再利用に関するガイドライン(国土交通省事務次官通達 平成18年6月12日) を遵守して、建設副産物の適正な処理及び再生資源の活用を図らねばならない。
- 2 受注者は、建設副産物が搬出される工事にあたっては、建設発生土は搬出伝票、産業廃棄物は産業廃棄物管理票(紙マニフェスト)または電子マニフェストにより、適正に処理されていることを確認するとともに、監督職員が請求したときは、遅滞なく提示しなければならない。
- 3 受注者は、当該工事が一定規模以上の工事(表-1.1)の場合は、工事着手に先立ち、「建設リサイクルデータ統合システム-CREDAS 入力システム-」(以下、「CREDAS 入力システム)という)を使用して、再生資源利用計画及び再生資源利用促進計画を作成し、1.4.3で規定する施工計画書に記載しなければならない。また、工事完成後速やかに再生資源利用実施書、再生資源利用促進実施書及び CREDAS 入力システムで作成したデータを提出しなければならない。
- 4 受注者は、建設廃棄物の処理に当っては、工事着手に先立ち、建設廃棄物処理計画を作成し、1.4.3 で規定する施工計画書に記載しなければならない。また、工事完成後、速や

かに「建設廃棄物処理実施書」を提出しなければならない。

表-1.1 一定規模以上の工事

及一1.1 足尻俣以上の工事						
再生資源利用計画(実施書)の作成	再生資源利用促進計画(実施書)の作成					
次の建設資材を搬入する工事	次の副産物を搬出する工事					
1. 土砂······1, 000m³以上	1. 土砂······1, 000m³以上					
2. 砕石・・・・・・・・・・・500t 以上	2. コンクリート塊					
3. 加熱アスファルト混合物・・・200t 以上	アスファルト・コンクリート塊 合計					
	建設発生木材 200t 以上					
	建設汚泥					
	建設混合廃棄物					

5 受注者は、建設工事に係る資材の再資源化等に関する法律(平成12年5月 法律第104号)第10条に基づき当社が都道府県知事等に届け出る内容について、同法12条に基づき書面を提出し、1.4.3で規定する施工計画書に記載し、監督職員に提出のうえ説明しなければならない。

1.1.38 過積載等の防止

- 1 受注者は、ダンプカー等大型貨物自動車による土砂、大型の工事用資材及び機械などの 運搬を伴う工事については、「土砂等を運搬する大型自動車による交通事故防止等に関す る特別措置法」(昭和 42 年法律第 131 号)及び「車両制限令」(昭和 36 年政令第 265 号) に基づき、関係機関と協議して、通行道路、通行期間、交通誘導員の配置、標識・安全施 設等の設置場所その他交通安全対策上必要な事項について、施工計画書に搬送計画を記載 しなければならない。なお、車両制限令(昭和 36 年政令第 265 号)第 3 条第 1 項に定め る制限を超えて工事用資材及び機械等を運搬する場合は、道路法(昭和 27 年法律第 180 号)第 47 条の 2 の許可を受けるものとする。
- 2 受注者は、土砂、資材等の運搬に当っては、ダンプカー等大型貨物自動車の過積載防止を厳守するとともに関係法令の定めに従い、次の各号を遵守しなければならない。
 - (1) 法に定める表示番号等を表示した車両を使用し、産業廃棄物運搬車等を目的外に使用しないこと。
 - (2) 積載重量制限を超過して工事用資材を積み込まず、また積み込ませないこと。
 - (3) 過積載を行っている資材業者から、資材を購入しないこと。
 - (4) 資材等の過積載を防止するため、建設発生土の処理及び骨材等の購入等に当っては、 下請業者及び骨材等納入業者の利益を不当に害することのないようにすること。
 - (5) さし枠装着車、物品積載装置の不正改造をしたダンプカー及び不法表示車等に土砂等を積み込まず、また積み込ませないこと。並びに工事現場に出入りすることのないようにすること。

- (6) 過積載車両、さし枠装着車、不表示車等から土砂等の引き渡しを受ける等、過積載 を助長することのないようにすること。
- (7) 取引関係のあるダンプカー事業者が過積載を行い、又はさし枠装着車、不法表示車等を土砂運搬に使用している場合は、早急に不正状態を解消する措置を講じること。
- (8) 「土砂等を運搬する大型自動車による交通事故防止等に関する特別措置法」(以下法という。)の目的に鑑み、法第12条に規定する団体等の設立状況を踏まえ、同団体等への加入者の使用を促進すること。
- (9) 下請契約の相手方又は資材納入業者を選定するに当っては、交通安全に関する配慮 に欠ける者又は業務に関しダンプカー等によって悪質かつ重大な事故を発生させたも のを排除すること。
- (10) 以上のことにつき、下請負契約における受注者を指導すること。

1.1.39 特許権等

- 1 契約書の「特許権等」の使用に規定する「その他の第三者の権利」とは、実用新案権、 意匠、著作権その他日本国の法令に基づき保護される第三者の権利をいう。受注者は、特 許権、その他第三者の権利となっている施工方法又は施工方法の使用に関する費用の負担 について、第三者と補償条件の交渉を行う前に、監督職員と協議しなければならない。
- 2 受注者は、業務の遂行により発明又は考案したときは、書面により報告するとともに、 これを保全するための必要な措置を講じなければならない。また、出願及び権利の帰属等 については、発注者と協議するものとする。
- 3 発注者が、引渡を受けた契約の目的物が著作権法(昭和 45 年法律第 48 号第 2 条第 1 項 第 1 号)に規定される著作物に該当する場合は、当該著作物の著作権は発注者に帰属する ものとする。なお、前項の規定により出願及び権利等が発注者に帰属する著作物について は、発注者はこれを自由に加除又は編集して利用することができる。

1.1.40 工事関係者に対する措置請求

- 1 発注者又は監督職員は、現場代理人(統括安全衛生責任者と兼任する現場代理人にあってはそれらの者の職務を含む。)が工事目的物の品質・出来形の確保および工期の遵守に関して、著しく不適当と認められるものがあるときは、受注者に対して、その理由を明示した書面により、必要な措置をとるべきことを請求することができる。
- 2 発注者又は監督職員は、主任技術者(監理技術者)、専門技術者又は統括安全衛生責任者(これらの者と現場代理人を兼務する者を除く。)、総括安全衛生監理者、元方安全衛生管理者、元方安全衛生管理代理者が工事目的物の品質・出来形の確保および工期の遵守に関して、著しく不適当と認められるものがあるときは、受注者に対して、その理由を明示した書面により、必要な措置をとるべきことを請求することができる。

1.1.41 臨機の措置

- 1 受注者は、災害防止等のため必要があると認めるときは、臨機の措置をとらなければならない。また、受注者は、措置をとった場合には、その内容をすみやかに報告しなければならない。
- 2 監督職員は、暴風、豪雨、洪水、高潮、地震、地すべり、落盤、火災、騒乱、暴動その 他自然的又は人為的事象(以下「天災等」という。)に伴い、工事目的物の品質・出来形 の確保および工期の遵守に重大な影響があると認められるときは、受注者に対して臨機の 措置をとることを請求することができる。

1.1.42 管理カードの作成

受注者は、工事が完成したときは、当社制定の保全情報管理システム管理カード作成仕様 書に基づき自らの費用により管理カードを作成し、しゅん功検査日までに監督職員に提出 しなければならない。この場合において、受注者は、カードの作成を第三者に委託又は請 負わせてはならない。

第2節 照 查

1.2.1 計算書等の照査

- 1 受注者は、工事の着手前に、電気通信計算書、材料計算書及び図面(以下「計算書等」 という。)の照査を行わなければならない。ただし、実施設計書付き工事における実施設 計の照査は、設計共通仕様書(施設編)によるものとする。
- 2 前項の計算書等の照査の範囲は、次のとおりとする。
 - (1) 電気通信計算書
 - イ 設計条件の照査

(許容電流、電圧降下、伝送損失、電源及び負荷容量、契約電力、保護協調、遮断容量、 照明照度、設定野外輝度等)

- ロ 計算過程の照査
- ハ 配管及び配線サイズと設計条件との照合
- ニ 電気方式及び通信方式と回路条件との照合
- ホ 施工に関わる技術的照査(工作物の応力計算書、重機選定)
- (2) 材料計算書
 - イ 数値と図面との照合
 - ロ 計算書の照査
 - ハ 金額を記載しない設計書との照合
- (3) 図 面
 - イ 図面と電気通信計算書との照合

- ロ 図面記載事項の機能及び適応性の照査
- ハ 既存設備及び関連工事との整合性の照査
- 3 受注者からの要求があり、監督職員が必要と認めた場合、受注者に設計図書の原図(もしくは電子データ)を貸与することができる。ただし、電気設備工事共通仕様書その他各種要領等販売されているものについては、受注者が備えるものとする。

1.2.2 照査担当主任技術者及び照査担当技術者

- 1 受注者は、計算書等の照査の着手に先立ち、照査担当主任技術者及び照査担当技術者を 定め、「照査担当主任技術者等選定通知書」及び「経歴書」を添えて監督職員に提出しな ければならない。
- 2 照査担当主任技術者は、1.1.16 に規定する主任技術者と同等以上の技術的専門知識及び 経験を有する者でなければならない。
- 3 監督職員は、照査担当主任技術者又は照査担当技術者について不適当と認められるときは、受注者に対してその理由を明示した書面により、必要な措置を取ることを請求することができる。

1.2.3 計算書等照査報告書及び照査表

受注者は、計算書等の照査について作業内容等の結果をまとめ、「計算書等照査報告書」 及び「計算書等照査表」を提出し、監督職員の確認を求めなければならない。また、受注 者は、監督職員から更に詳細な説明又は書面の追加の要求があった場合は、これに従わな ければならない。

第3節 調 査

1.3.1 現場測量

受注者は、設計図書及び監督職員の指示に従い、工事の施工に先立ち、必要な測量及び測定(既存構造物及び設備を含む)を行い、その結果を速やかに報告しなければならない。

1.3.2 工事に伴う調査

受注者は、施工計画書の立案、工事の安全対策等に必要なものについては、自らの責任 と費用負担により調査を行い、契約書第 18 条の条件変更が生じる場合は、速やかに監督 職員に確認の請求を行うものとする。

第4節 施工管理

1.4.1 一 般

受注者は、工事目的物が契約書類に適合するよう工事を施工するために、自らの責任により設備、組織等の施工管理体制を確立しなければならない。

1.4.2 工事実施工程表

- 1 受注者は、契約書第3条第1項の規定により提出した工事工程表に基づき、より詳細な 実施工程表をネットワーク手法により作成し、監督職員の承諾を得なくてはならない。た だし、監督職員が特に認めた工事については、バーチャート手法によることができるもの とする。
- 2 受注者は、工事工程に変更が生じたときには、前項の規定に基づき変更実施工程表を作成し、監督職員の承諾を得なくてはならない。

1.4.3 施工計画書

- 1 受注者は、工事着手前に次の各号に掲げる事項を記載した施工計画書を提出しなければならない。また、監督職員がその他の項目について補足を求めた場合には、追記するものとする。
 - (1) 工事概要
 - (2) 実施工程表(事前に1.4.2により、監督職員の承諾を得ること。)
 - (3) 現場組織
 - (4) 緊急時の体制
 - (5) 仮設備計画
 - (6) 保安設備
 - (7) 使用材料(品名、規格、製造業者名、適合規格を記載する。) 適合規格については、設計図書、土木材料共通仕様書又は JIS 規格番号を明記する。
 - (8) 主要機械
 - (9) 施工計画
 - (10) 搬送計画
 - (11) 工事用道路の維持管理、補修及び使用方法等計画
 - (12) 環境対策
 - (13) 安全衛生管理
 - (14) 防災対策計画
 - (15) 社内検査体制(工種ごとの検査責任者及び検査項目も記載する。)
 - (16) 品質出来形管理体制
 - (17) 再生資源利用計画及び再生資源利用促進計画 (1.1.37 第 3 項で規定する工事に該当する場合)
 - (18) 建設廃棄物処理計画
 - (19) その他必要と認められる事項(業務用 ETC カードの管理等)
- 2 受注者は、施工計画書の内容に変更が生じた場合には、当該工事に着手する前に変更施工計画書を提出しなければならない。なお、その後変更が生じた場合には、その都度、当

該箇所について変更施工計画書の差替えを行い、合わせて、削除、追記等その変更内容を 記した履歴簿を添付すること。なお、差替える内容が、提出した作業計画書と重複する場 合には、変更施工計画書に当該の作業計画書を差替えること。併せて、作業計画書を差込 んだことがわかるよう整理すること。

- 3 受注者は、工種毎の施工体制、細部計画等工事の進捗にあわせて施工計画を立てる必要がある場合には、監督職員の承諾を得て、施工計画書又は変更施工計画書を分割することができる。ただし、この場合においても当該工種の施工に着手する前に提出しなければならない。
- 4 作業計画書を作成した工種については、前項より作成する変更施工計画書の当該工種の 作成を省略することができる。ただし、履歴簿に作業計画書により提出した旨を記載する こと。

1.4.4 品質管理計画書

- 1 受注者は、当社で採用された実績のない材料、製品及び工法(以下、「新材料等」という。)を使用する場合は、次の各号に掲げる事項を記載した品質管理計画書を提出しなければならない。また、監督職員がその他の項目について補足を求めた場合には、追記するものとする。ただし、応力部材として使用しないものについては、監督職員の承諾のうえ省略することができる。
 - (1) 適用の範囲
 - (2) 施工概要
 - (3) 要求性能
 - (4) 使用材料(材料名、規格、製造業者名、適合規格、材料試験等の結果)
 - (5) 試験施工計画
 - (6) 施工管理計画(社内検査体制含む)
 - (7) 品質管理計画(品質管理体制含む)
 - (8) その他必要と認められる事項
- 2 受注者は、品質管理計画書の内容に変更が生じた場合には、その都度当 該新材料等使用前に、「変更品質管理計画書」を提出しなければならない。
- 3 受注者は、新材料等を使用する場合は、次の各号に基づき施工管理を行 わなければならない。
 - (1) 材料受け入れ時は、2.1.4 第 6 項にて監督職員の承諾を得た性能、 品質と現場に搬入された材料との整合を確認すること。
 - (2) 試験施工を実施し、設計時において前提とした要求性能を確認すること。
 - (3) 施工中は、品質管理計画書に記載した施工管理計画及び品質管理計画に基づき、必要な検査を実施すること。
 - (4) 施工完了後、設計時において前提とした要求性能が満足されている

ことを確認すること。

(5) その他必要と認められる事項。

1.4.5 施工法の承諾

受注者は、設計図書において施工法に関し、監督職員の承諾を得ることと指定された事項については、「施工法承諾申請書」を提出し、監督職員の承諾を得なければならない。

1.4.6 作業計画書

- 1 受注者は、設計図書に定められているときは、当該作業着手前に、以下の事項を記載した「作業計画書」を作成し、提出しなければならない。
 - (1) 施工体制
 - (2) 作業工程
 - (3) 施工方法(施工順序及び施工範囲含む)
 - (4) 使用材料
 - (5) 機械器具類
 - (6) 品質及び施工管理計画(社内検査体制含む)
 - (7) その他各節に特に定める事項等
- 2 受注者は、作業計画書の内容に変更が生じた場合には、その都度当該作業着手前に「変更作業計画書」を提出しなければならない。
- 3 提出した作業計画書の内容を変更施工計画書に反映する必要がある場合には、当該の作業計画書を変更施工計画書に差込むこと。

1.4.7 施 工

- 1 受注者は、施工計画書及び作業計画書を遵守し工事の施工に当たらなければならない。
- 2 受注者は、工事の施工部分が設計図書に不適合であることを発見した場合は、直ちに工事打合せ簿にその内容等を記載して報告し、監督職員の指示を受けなければならない。
- 3 受注者は、首都高速道路上にあっては「道路工事等協議書」に従い工事を施工し、高速 道路外の道路にあっては、工事等の施工に先立ち、道路管理者との協議回答及び許可条件 を遵守して工事を施工しなければならない。
- 4 受注者は、首都高速道路上において工事を施工するときは、「道路工事等協議書」の写し 及び作業連絡の写し(当社から交付されたもの)を、高速道路外の道路にあっては「道路 使用許可書」をそれぞれ携帯しなければならない。

1.4.8 ETC 業務用カードの貸与

1 受注者は、維持、維持工事等(新設又は改築については、首都高速道路の工事で、供用中の首都高速道路を通行しなければ施行が困難な工事に限る。)のため首都高速道路上(営

業路線)へ入る場合は、原則として ETC 業務用カードによらなければならない。

- 2 受注者は、首都高速道路(営業路線)へ入るために必要な ETC 業務用カードについては、 交付申請することにより、必要枚数を請求することができる。
- 3 受注者は、ETC 車載器を自らの負担により設置しなければならない。
- 4 受注者は、貸付を受けた ETC 業務用カード1 枚毎に、毎月末に使用報告書を提出しなければならない。なお、「使用報告書」の内容について、監督職員が確認を求める場合がある。
- 5 受注者は、ETC 業務用カードの使用においては、紛失及び不正使用の防止に努め、その管理方法について施工計画書に記載しなければならない。
- 6 受注者は、受注者の責による ETC 業務用カードの紛失及び紛失に伴う第三者の不正使用により当社が被った損害については賠償しなければならない。
- 7 受注者は、ETC 車載器の搭載が困難な場合 (短期リース車両等) や特別な事情のある場合は、 貸与された ETC 業務用カート を使って ICCR 方式により首都高速道路 (営業路線) に入ること。

1.4.9 出来形の管理

1 受注者は、設計図書に出来形規格値の定めがあるときは、規格値に則った出来形の管理 を行わなければならない。

なお。設計図書に定めがない場合は、監督職員の指示により出来形の管理をしなければならない。

2 受注者は、工事の完成後、「出来形図表」を提出しなければならない。

1.4.10 現場社内検査

- 1 受注者は、施工計画書又は作業計画書に基づき、工事の施工段階において、自らの責任 と費用により現場社内検査を行わなければならない。
- 2 受注者は、監督職員の請求に対し、前項の現場社内検査の結果を、直ちに提示しなければならない。
- 3 受注者は、現場社内検査責任者を定め、「施工計画書」又は「作業計画書」に記載しなければならない。なお、現場社内検査責任者は、主任技術者又は監理技術者及び元受注者に所属する専門技術者がこれを兼ねることができる。
- 4 受注者は、工事の施工について、現場監督員の立会を受ける場合は、事前に現場社内検査を実施しなければならない。また、その結果を現場監督員が請求した場合は、直ちに提示しなければならない。

1.4.11 工事週報等

1 受注者は、翌週に予定している工事内容並びに翌週の現場における工事材料検査及び工 事施工立会予定を記載した「工事週報・立会検査願」を作成し、その電子データを電子メ ールにて前週の営業日の末日までに提出するとともに、工事の実施後はその電子データに 実施した工事の内容を記載して速やかに提出しなければならない。ただし、電子メールに よる提出が困難な場合は、紙による提出も可能とする。なお、提出されたものを整備・保 管し、工事検査室工事検査課による検査時に確認できるようにしなければならない。

- 2 前項において、準備工、工場製作工等の期間で、監督職員が認めた工事については、「工 事週報・立会検査願」の工事週報に関する項目の作成及び提出を省略することができる。
- 3 受注者は、第1項の「工事週報・立会検査願」による工事の予定の内容に変更が生じた ときは、速やかに報告しなければならない。なお、報告方法については、第1項の提出方 法に準ずるものとする。
- 4 受注者は、前月分の作業実績及びその月に実施する予定の工事内容等を「工事進捗状況 表」に記載し、毎月5日までに、これを提出しなければならない。この場合において、実 施工程に変更が生じたときは、実施工程表の変更を1.4.3 第2項の規定により行わなけれ ばならない。
- 5 受注者は、作業日誌、材料受払簿、施工管理試験記録その他必要な帳簿を整備・保管し、 監督職員の請求があった場合は直ちに提示するとともに、検査時に提出しなければならな い。

1.4.12 工事用仮設構造物等

受注者は、設計図書に特別な定めのある場合を除き、仮設施工方法等その他工事目的物を 完成するために必要な一切の手段については、自らの責任と費用により所要の事項を定め、 労働安全衛生法、建設工事公衆災害防止対策要綱その他関係法令等に基づき、安全を確認の 上、工事を施工しなければならない。

1.4.13 作業用機械の選定等

- 1 受注者は、工事に使用する建設機械の選定、使用等について、設計図書により建設機械 が指定されている場合には、これに適合した建設機械を使用しなければならない。ただし、 条件のよい機械がある場合には、監督職員の承諾を得て使用することができる。
- 2 受注者は、騒音規制法第 14 条及び振動規制法第 14 条の規定に基づき市町村に届出を行ったときは、速やかに報告しなければならない。
- 3 受注者は、作業用機械の操作・組立又は解体に当たっては、安全に配慮し、人的・物的 な危害を与えないようその周辺に必要な措置を自らの責任と費用により講じなければな らない。

1.4.14 環境保全

1 受注者は、建設工事に伴う騒音振動対策技術指針(建設大臣官房技術審議官通達、昭和 62年4月16日)、関連法令及び条例並びに設計図書の規定を遵守の上、騒音、振動、大気 汚染、水質汚濁等の問題については、施工計画及び工事の実施の各段階において十分に検 討し、周辺地域の環境保全に努めなければならない。

- 2 受注者は、環境への影響が予知され又は発生した場合は、直ちに報告し、監督職員から 指示があったときは、それに従わなければならない。第三者から環境問題に関する苦情が あった場合には、受注者は、1.1.9 の規定に従い対応しなければならない。
- 3 監督職員は、工事の施工に伴い地盤沈下、地下水の断絶等の理由により第三者への損害が生じた場合は、受注者に対して、受注者が善良な管理者の注意義務を果たし、その損害が避け得なかったか否かの判断をするための資料の提示を求めることができる。この場合において、受注者は、必要な資料を提示しなければならない。

1.4.15 支障物件の処理

- 1 受注者は、工事の施工に支障を及ぼす既存の物件(支障物件)について、関係者及び監督職員の承諾を得た上で必要に応じこれらの調査を行うとともに、その状況を確認の上報告書を提出しなければならない。
- 2 受注者は、前項の報告書を提出したときは、支障物件の処理について監督職員の指示を受けなければならない。
- 3 受注者が自らの都合により既存の物件を移転する必要が生じたときは、報告しなければ ならない。これに必要な費用は、受注者の負担とする。
- 4 受注者は発注者が管理する既設構造物の補修工事等を行うことにより不要となる部材については次の各号によらなければならない。
 - (1) 監督職員に報告し、処置について監督職員の指示を受けること。
 - (2) 撤去する場合の撤去範囲等については監督職員の指示を受けること。
 - (3) 残置せざるを得ない場合、その措置について監督職員の指示を受けること。

1.4.16 支給材料及び貸与品

支給材料及び貸与品については、契約書第 15 条の規定によるほか、次の各号によらなければならない。

- (1) 受注者は、契約書第15条第1項に規定する「引渡場所」について、設計図書に記載がない場合は、監督職員の指示によらなければならない。
- (2) 受注者は、契約書第15条第1項の規定に基づき、支給材料及び貸与品の支給を受ける場合は、速やかに「支給材料・貸与材料使用明細書」を提出しなければならない。
- (3) 受注者は、支給材料または貸与品の保管場所の整備を行い、支給材料又は貸与品の 受入れに支障のないようにしなければならない。この場合において、保管場所の位置、 面積、構造等及び支給材料または貸与品の貯蔵方法等について監督職員の承諾を得なけ ればならない。
- (4) 受注者は、支給材料又は貸与品について、当社から支給又は貸与されたものである

ことを明らかに識別できるようにしておかなければならない。

- (5) 受注者は、支給材料又は貸与品を設計図書で定められた使用目的以外の用途に使用してはならない。
- (6) 受注者は、毎月5日までに支給材料・貸与品使用管理状況一覧表を提出し、支給材料及び貸与品について、前月分の使用及び保管の状況を明らかにしなければならない。
- (7) 受注者は、貸与鋼材の使用に当って溶接又は切断を行う場合は、「貸与鋼材溶接願または貸与鋼材切断願」を提出し、監督職員の承諾を得なければならない。
- (8) 受注者は、当社から貸与される機械器具の使用にあたっては、土木工事共通仕様書 V機械器具貸与共通仕様書の規定によらなければならない。
- (9) 受注者は、契約書第15条第9項に定める「不用となった支給材料又は貸与品の返還」 については、「返還材料調書」又は「貸与材料返還通知書」を提出し、監督職員の指示 を受けなければならない。なお、受注者は、返還が完了するまで材料の損失に対する責 任を免れることはできない。

1.4.17 現場発生品

- 1 受注者は、工事の施工に伴い、設計図書に定めのない現場発生品を発見したときは、直 ちに報告し、監督職員の指示を受けるとともに、当該発生品の品名、規格及び数量につい て監督職員の確認を受けた後、「発生品報告書」を提出しなければならない。
- 2 受注者は、工事の施工によって生じた現場発生品については、前項に規定する「発生品報告書」を作成し、監督職員の指示する場所で引き渡さなければならない。

第5節 安全衛生管理

1.5.1 一 般

- 1 受注者は、建設工事公衆災害防止対策要綱(建設事務次官通達、平成5年1月12日)を 遵守するとともに、当社制定の土木工事安全衛生管理指針(以下「土木工事安全衛生管理 指針」という。)及び建設機械施工安全技術指針(国土交通省大臣官房技術調査課長、国 土交通省総合政策局建設施工企画課長通達 平成17年3月31日改正)を参考にして、常 に工事の安全に留意し現場管理を行い災害の防止に努めなければならない。
- 2 受注者は、工事施工中、監督職員及び管理者の許可なくして、流水及び水陸交通の支障 となる行為、又は公衆に支障を及ぼすなどの施工をしてはならない。
- 3 受注者は、工事現場のイメージアップを図るため、現場事務所、作業員宿舎、休憩所又は作業環境等の改善を行い、快適な職場を形成するとともに、地域との積極的なコミュニケーション及び現場周辺の美装化に努めるものとする。

1.5.2 総括安全衛生監理者、統括安全衛生責任者及び元方安全衛生管理者

1 受注者は、1.1.16に規定する総括安全衛生監理者、統括安全衛生責任者及び元方安全衛

生管理者を配置し、安全衛生管理の業務に従事させなければならない。統括安全衛生責任 者及び元方安全衛生管理者は、現場に常駐させなければならない。

- 2 総括安全衛生監理者は、次に掲げる業務を遂行しなければならない。
 - (1) 労働者の危険又は健康障害を防止するための措置に関すること。
 - (2) 労働者の安全又は衛生のための教育の実施に関すること。
 - (3) 健康診断の実施その他健康の保持増進のための措置に関すること。
 - (4) 労働災害の原因の調査及び再発防止対策に関すること。
 - (5) 毎月1回以上工事現場内外を巡視して工事現場の状況を把握し、施工計画書のとおり工事の施工及び安全衛生管理が行われているかどうかの確認をすること。
 - (6) 工事を進める上で安全衛生管理に関する改善等の必要がある場合は、統括安全衛生 責任者に速やかに処置を指示すること。
 - (7) 現場で組織される安全協議会等に随時参加し、安全衛生に必要な業務を行うこと
 - (8) その他労働災害を防止するための措置に関すること。
- 3 統括安全衛生責任者は、現場に常駐し、労働安全衛生法第 15 条及び第 30 条第 1 項に規 定されている業務のほか、次に掲げる業務を統括管理しなければならない。
 - (1) 工事を進める上で、安全衛生管理に関する改善等の必要がある場合は、直ちに処理し、その結果をとりまとめたうえで報告すること。
 - (2) 災害及び事故が発生したとき又は発生する恐れがあるときは、直ちに付近住民、一般通行人その他の第三者及び必要があるときは、労働者等を工事現場周辺から退去させ、報告するとともに関係機関に連絡しなければならない。
- 4 元方安全衛生管理者は、現場に常駐し、労働安全衛生法第15条の2及び第30条第1項 に規定されている業務のほか、次に掲げる業務を管理しなければならない。

なお、元方安全衛生管理者は、他の技術者と兼務できない。

- (1) 工事を進める上で、安全衛生管理に関する改善等を行う場合は、統括安全衛生責任者と連絡を密にして、速やかに処置すること。
- (2) 安全衛生管理について、安全衛生管理日誌を毎日作成し、監督職員が請求した場合 及び工事検査室工事検査課による検査時に提示すること。提示のみを義務づけるが、納 品は不要とする。なお、様式については、当社で定めるものを標準とするが、受注者が 標準ではない様式を希望する場合には、予め施工計画書にその様式を添付し、監督職員 の承諾を得ることにより、標準の様式に代えることができるものとする。
- 5 元方安全衛生管理代理者は、元方安全衛生管理者がやむを得ない事情により不在となる 等その職務を遂行できないときは、現場に常駐し、前項に定める元方安全衛生管理者の業 務を遂行しなければならない。

なお、元方安全衛生管理代理者は、元方安全衛生管理者が不在となる等、その職務を 遂行できないときにあっては、他の技術者と兼務できない。

6 主任監督員は、一の場所において二以上の工事が混在して施工をする場合、労働安全衛

生法第30条第2項の規定により、受注者と協議の上、現場を統括管理する主たる統括安全衛生管理義務者(原則として統括安全衛生責任者)を指名し通知するものとする。

7 受注者は、工事中における安全の確保を全てに優先させ、労働安全衛生法等関連法令に 基づく措置を常に講じておくものとする。特に重機械の運転、電気設備等については、関 係法令に基づいて適切な措置を講じておかなければならない。

1.5.3 災害及び事故報告

受注者は、工事の施工中、若しくは工事の中止中に災害又は事故が発生したと きは、直ちに応急処置をとり、監督職員に通報し指示を受けなければならない。また、受注者は、速やかに「災害・事故報告書」を作成し、次の各号により提出しなければならない。

- (1) 契約書第29条第1項に規定する損害が生じたときは、総括監督員に提出するものとする。
- (2) 前号以外の災害及び事故については、現場監督員に提出するものとする。

1.5.4 工事現場

- 1 受注者は、工事現場に工事関係者以外の者の立入を禁止する場合は、板囲い、防護柵等により囲うとともに、立入禁止の表示を行い、当該区域内を常に整理整頓しておかなければならない。
- 2 受注者は、工事現場に工事名、工事区間、工事期間、施工業者名、当社名、工事許可条件等を記載した工事標示板を設置しなければならない。この場合において、夜間作業を行うときは、その旨を工事標示板に記載しなければならない。
- 3 受注者は、道路上において工事を施工する際は、必ず、道路使用許可証を携行しなければならない。
- 4 受注者は、工事現場が隣接し又は同一場所において別途工事がある場合は、請負業者間 の安全施工に関する緊密な情報交換を行うとともに、非常時における臨機の措置を定める 等の連絡調整を行うため、関係者による工事関係者連絡会議を組織するものとする。
- 5 受注者は、工事現場において交通誘導警備業務を行う必要のある場合は、交通誘導業務 を行う場所ごとに検定合格者を1名以上配置することにより、事故の発生を警戒、及び防 止しなければならない。

1.5.5 爆発及び火災の防止

- 1 受注者は、爆発物等の危険物を備蓄し、使用する必要がある場合には関係法令を遵守するとともに、関係官公署の指導に従い、爆発物の防止の措置を講じておかなければならない。
- 2 受注者は、火薬類を使用し工事を施工する場合は、使用に先立ち「使用計画書」を提出しなければならない。

- 3 受注者は、危険物および指定可燃物(以下「危険物等」という)を用いた作業を行う場合は、保管場所、実際使用する数量、使用期間、使用方法の明記を行い、施工に先立ち「作業計画書」を提出しなければならない。また、保管場所毎に危険物等チェックシートを作成し、入荷毎に監督職員に報告しなければならない。
- 4 受注者は、伐開除根、掘削等により発生した雑木、草等を野焼きしてはならない。ただ し、軽微なものを野焼きする場合は、関係官公署と打合せを行い、監督職員の承諾を得て 処理するものとする。
- 5 受注者は、喫煙等の場所を指定し、指定場所以外での火気の使用を禁止しなければならない。
- 6 受注者は、ガソリン、塗料等の可燃物の周辺に火気の使用を禁止する旨の表示を行い、 周辺の整理に努めなければならない。
- 7 現地に火薬庫等を設置する場合は、火薬類の盗難防止のための立入防止柵、警報装置等 を設置し保管管理に万全の措置を講ずるとともに、夜間においても、周辺の監視等を行い、 安全を確保しなければならない。
- 8 受注者は、工事のために火気を使用する必要があるときは、あらかじめ所轄の消防署及び施設の管理者に火気の使用に関して必要な手続を行うとともにその使用を工事に直接必要な限度にとどめ、消火器等を常備し、防火に留意しなければならない。

1.5.6 地下埋設物

- 1 受注者は、工事の施工に先立ち、当社から貸与された埋設物の資料等を参考にして、設計図書に定められた工事現場及びその周辺地域における埋設物の位置、規格、構造、老朽の程度等を埋設物の管理者の立会の下に、試掘等によって確認しなければならない。
- 2 受注者は、埋設物に接近して工事を施工するときは、あらかじめその埋設物の管理者と 工事の施工の各段階における保安上必要な措置、埋設物の管理者の立会の有無、緊急時 の連絡方法等を協議の上、報告しなければならない。
- 3 受注者は、工事中埋設物を露出させるときは、当該埋設物を防護し、工事中の損傷を防止するために万全の措置を講じるとともに、常に巡視点検を行い、異状を認めたとき又は埋戻し後に異状を生じるおそれがあるときは、直ちに監督職員及びその埋設物の管理者に報告し、その指示を受けなければならない。
- 4 受注者は、工事の施工に支障となる埋設物の移設又は撤去を行うときは、埋設物管理者と協議し、万全の措置を講じなければならない。
- 5 受注者は、地下埋設物件等に損害を与えた場合は、直ちに報告するとともに、関係機関 に連絡をとり、補修しなければならない。

1.5.7 防災対策

受注者は、工事の施工に当たり、豪雨、豪雪、出水、強風等に対しては、施工計画書に記

載した防災対策計画に基づき天気予報等に注意を払い、常に災害を最小限に食い止めるため の資機材等の準備をする等、防災体制を確立しておかなければならない。

1.5.8 地震防災及び震災対策

1 防災対策

受注者は、工事の施工に当たり、自らの責任と費用により次の各号に基づき、地震災害に対する措置を講じなければならない。

- (1) 地震発生に備えて、施工計画書に記載した防災対策計画に基づき、防災体制を確立しておかなければならない。なお、情報収集・伝達及び点検要員の配置に関しては、複数の手段を講じて置かなければならない。
- (2) 地震が発生したときは、工事現場の状況に応じて、直ちに初期点検及び詳細点検を行うとともに、その結果を報告しなければならない。
- 2 受注者は、警戒宣言が発令されたときは、直ちに工事を中止し、次に掲げる事項につい て措置を講じなければならない。
 - (1) 構築中の構造物、仮設構造物、建設機械器具等が他に被害を及ぼさない保全措置を 講ずること。
 - (2) 現場での労力及び機材の確保に努めること。

3 震災対策

受注者は、地震の発生により被害が確認された場合には、次の各号に基づき対策を講じなければならない。

- (1) 被害が確認された場合には、直ちに被害の拡大を防ぐために必要な応急措置を行い、速やかにその処置について報告しなければならない。
- (2) 重大な被害が確認された場合には、直ちに人命の安全・緊急輸送路の確保に努めるとともに、被害の拡大及び余震等による二次災害の防止に対し必要な処置を行い、速やかに報告しなければならない。
- (3) 被害の詳細点検が必要と判断される場合には、あらかじめ監督職員の意見を聴き、その指示に従わなければならない。
- (4) 他の工事現場等からの応援要請があった場合には、可能な限りその要請に応じるよう努めなければならない。
- (5) 災害復旧に当たっては、監督職員の指示に従い、速やかに作業計画書により災害復旧計画を提出するとともに、復旧資材及び労力の確保に努めなければならない。

1.5.9 仮設備の管理

受注者は、施工に必要な電力、給水等の仮設備に第三者及び関係使用人等以外の使用 人等が接触することのないよう防護するとともに、電力設備については、管理責任者を 定め、十分な管理をしなければならない。

1.5.10 交通安全管理

- 1 受注者は、工事用運搬路として、公衆に供する道路を使用するときは、積載物の落下等により、路面を損傷し、あるいは汚損することのないようにするとともに、特に第三者に工事公害による損害を与えないようにしなければならない。なお、第三者に工事公害による損害を及ぼした場合は、契約書第28条によって処置するものとする。
- 2 受注者は、工事用車両による土砂、工事用資材及び機械などの輸送を伴う工事について は、関係機関と打合せを行い、交通安全に関する担当者、輸送経路、輸送期間、輸送方 法、輸送担当業者、交通誘導員の配置、標識安全施設等の設置場所、その他安全輸送上 の事項について計画を立て、災害の防止を図らなければならない。
- 3 受注者は、当社管理外の供用中の道路に係る工事の施工に当たっては、交通の安全について、監督職員、道路管理者及び所轄警察署と打合せを行うとともに、道路標識、区画線及び道路標示に関する命令(内閣府・国土交通省令第4号、平成26年5月26日改正)、道路工事現場における標示施設等の設置基準(建設省道路局長通知、昭和37年8月30日)、道路工事現場における標示施設等の設置基準の一部改正について(国土交通省道路局長通知、平成18年3月31日)、道路工事現場における工事情報板及び工事説明看板の設置について(国土交通省道路局路政課長、国道・防災課長通知 平成18年3月31日)、道路工事保安施設設置基準(案)(建設省道路局国道第一課通知昭和47年2月)及び道路工事保安施設設置基準(国関整道管第65号、平成18年4月1日)に基づき、安全対策を講じなければならない。
- 4 受注者は、設計図書において指定された工事用道路を使用する場合は、設計図書の定め に従い、工事用道路の維持管理及び補修を行うものとする。
- 5 受注者は、工事用道路の使用開始前に関係機関に所要の手続きをとるものとし、監督職員が特に指示する場合を除き、標識の設置その他の必要な措置を行わなければならない。
- 6 監督職員が工事用道路に指定するもの以外の工事用道路は、受注者の責任において使用するものとする。
- 7 受注者は、特記仕様書に他の受注者と工事用道路を共用する定めがある場合においては、 その定めに従うとともに、関連する受注者と緊密に打合せ、相互の責任区分を明らかに して使用するものとする。
- 8 公衆の交通が自由かつ安全に通行するのに支障となる場所に材料又は設備を保管して はならない。受注者は、毎日の作業終了時及び何らかの理由により建設作業を中断する ときには、交通管理者協議で許可された常設作業帯内を除き一般の交通に使用される路 面からすべての設備その他の障害物を撤去しなくてはならない。
- 9 受注者は、首都高速道路上の施工にあたり、当社制定の高速道路上工事の保安施設実施 要領に基づくほか、設計図書及び監督職員の指示に従い、一般通行車両への安全対策並 びに使用人等の保安に万全を期さなければならない。

- 10 受注者は、首都高速道路上で作業を行う場合は、事前に補修工事等調整システムに入力 するとともに他の工事との調整を図らなければならない。なお、首都高速道路以外の道 路との管理境で作業を行う場合については監督職員の指示に従わなければならない。
- 11 受注者は、首都高速道路上での作業開始時間帯が設計図書に明示されていない場合は、 監督職員の指示を受けなければならない。
- 12 工事の性質上、受注者が、水上輸送によることを必要とする場合には本条の「道路」は、水門、又は水路に関するその他の構造物と読み替え「車両」は船舶と読み替えるものとする。
- 13 受注者はチェックシートにより、作業前ミーティング等において、運転者の運転免許証、 健康状態、酒気帯びをチェックして、運転者の法令遵守及び安全管理に努めなければな らない。なお、監督職員からチェックシートの提出指示があった場合は、速やかに提出 すること。

1.5.11 安全・訓練等の実施

- 1 受注者は、土木請負工事における安全・訓練等の実施について(建設大臣官房技術調査室長通達 平成4年3月19日)及び建設工事の安全対策に関する措置について(建設大臣官房技術調査室 平成4年4月14日)に基づき、工事着手後、作業員全員の参加により月当たり、半日以上の時間を割当て、次の各号から実施する内容を選択し、定期的に安全に関する研修・訓練等を実施しなければならない。
 - (1) 安全活動のビデオ等視覚資料による安全教育
 - (2) 当該工事内容等の周知徹底
 - (3) 土木工事安全管理指針等の周知徹底
 - (4) 当該工事における現場組織図及び緊急時の体制の確認
 - (5) 当該工事における災害対策訓練
 - (6) 当該工事現場で予想される事故対策
 - (7) その他、安全・訓練等として必要な事項
- 2 受注者は、当該工事の内容に応じた安全・訓練等の具体的な計画を施工計画書に記載しなければならない。
- 3 受注者は、安全・訓練等の実施状況をビデオ等又は工事週報等に記録し、報告しなければならない。

1.5.12 交通事故発生時等の協力業務

工事関係者が、首都高速道路上等を道路交通法の道路維持作業用自動車の指定を受けた車両で走行中に交通事故等の緊急事態に遭遇又は、落下物等を発見した場合は、自らの安全が確保でき、かつ可能な範囲で、下記に示す措置を行うものとする。

(1) 非常電話、無線などによる通報

- (2) 発煙筒、旗、ラバコーン等による後続車両等への注意喚起
- (3) 負傷者の救助、援助及び落下物の車線からの排除

第 6 節 監督職員が行う検査

1.6.1 一 般

監督職員は、設計図書に定められた出来形及び品質を確保するため、書類又は立会により、出来形、品質、数量等を確認する検査を行うものとする。この場合において、受注者が 1.4.10 により提示した現場社内検査の結果を参考とする。

1.6.2 検 査

- 1 受注者は、設計図書の定めにより監督職員の検査を受ける事項及び主任監督員があらか じめ担当監督員の検査を受けるよう指示した事項については、担当監督員の検査を受け なければならない。この場合において、受注者は、工事施工立会予定を記載した「工事 週報・立会検査願」を作成し、その電子データを電子メールにて前週の営業日の末日ま でに提出しなければならない。
- 2 監督職員は、工事期間中、工事のすべてについて検査を行うことができる。この場合に おいて、受注者は、検査を円滑に実施するため、情報提供及び協力を行わなければなら ない。
- 3 前項の場合において、総括監督員が必要と認めたときは、総括監督員の定める現場監督 員は、製作工場に滞在して、全部又は一部の工程について立会又は検査を行うことがで きる。
- 4 受注者は、現場監督員が出来形及び品質の確認のために資料の提出を求めた場合は、これに従わなければならない。
- 5 受注者は、第1項から第3項までの検査には、1.4.10第3項に規定する現場社内検査責任者及び1.1.17に規定する専任技術者を臨場させなければならない。
- 6 受注者は、自ら補修又は改作を行うときは、監督職員の承諾を得なければならない。

1.6.3 受注者の責任

受注者が、契約書第 14 条に規定する現場監督員の立会を受けて調合し、若しくは検査に 合格した工事材料又は見本若しくは工事写真等の記録が整備された工事材料を使用したと き又は現場監督員の立会を受けて施工したときにあっても、品質保証に係る受注者の責任は 免除されない。

1.6.4 検査又は立会の時間

現場監督員による検査及び立会の時間は、当社の勤務時間内とする。ただし、やむを得ない理由があると現場監督員が認めた場合若しくは指示した場合はこの限りでない。

1.6.5 検査に必要な費用

- 1 契約書第13条第2項及び第14条第7項に規定する「直接要する費用」とは、検査及び 立会に必要な準備、人員及び資機材等の提供並びに写真その他資料の整備のために必要 な費用をいう。
- 2 受注者は、監督職員が製作工場に滞在して立会又は検査を行う場合は、監督業務に必要な机、椅子、ロッカー、電話等の備わった専用の執務室を無償で提供するとともに、光 熱水費を負担しなければならない。

1.6.6 立会の省略

現場監督員がやむを得ず立会を行うことができない場合には、当該立会を省略することができる。この場合において、事前に実施した受注者の現場社内検査(自主検査)をこれに替えることができるものとする。なお、受注者は、社内検査の結果及び写真等の資料を整備し、現場監督員の確認を受けなければならない。

第 7 節 電気工作物保安検査

1.7.1 一 般

電気工作物保安検査とは、当社が別に定める自家用電気工作物の保安業務に係る電気主任技術者又はその補助を行う保安担当主務者(以下「電気主任技術者等」という。)が、自家用電気工作物に係る工事の一部又は全部が完成したときに、首都高速道路株式会社電気工作物保安規程その他関連法令に基づき、電気工作物に係る工事の保安上支障がないことを確認するために行う検査をいう。

1.7.2 検 査

- 1 受注者は、書面により電気主任技術者等に検査を依頼しなければならない。
- 2 受注者は、検査を受ける前に、電気主任技術者等の指示に従い社内検査を実施するとともに、社内検査の結果を電気主任技術者等に提出しなければならない。
- 3 受注者は、検査を受けるに必要な条件並びに現場体制を整えなければならない。

4 臨 場

- (1) 電気主任技術者等は、検査に当たり、現場代理人のほか、必要に応じ、主任技術者及び現場代理人を指導監督する立場にある役職員の臨場を求めることができる。
- (2) 電気主任技術者等は、検査に当たり、当該工事の受注者のほか、必要に応じ、当該工事に関連する他の工事の受注者の臨場を求めることができる。

5 修 補

(1) 電気主任技術者等は、検査の結果、修補を必要と認めたときは、受注者に対し、書面により修補を命ずる。ただし、軽微な修補については、電気主任技術者等は、現地

において、修補を口頭指示することができる。

- (2) 受注者は、電気主任技術者等から書面で修補を指示されたときは、指示された期間内に自らの責任と費用により修補を行い、電気主任技術者等の再検査を受けなければならない。
- (3) 受注者は、電気主任技術者等から修補を口頭指示されたときは、指示された期間内 に自らの責任と費用により修補を行い、電気主任技術者等の指示する方法により修補完 了の確認を受けなければならない。
- (4) 受注者は、修補が完了したときは、直ちに書面により電気主任技術者等に報告しなければならない。

1.7.3 受注者の責任

受注者は、前項による検査に合格したときにあっても、品質保証に係る受注者の責任は免除されない。

1.7.4 検査に必要な費用

受注者は、検査に当たり、1.6.5に規定する費用を負担しなければならない。

第8節 検査員等が行う検査

1.8.1 一 般

- 1 検査員等は、現場監督員及び受注者の臨場の上、次に掲げる検査を行うものとする。
 - (1) しゅん功検査

契約書第 31 条第 2 項の規定に基づき、工事の完成を確認するための検査をいう。この検査においては、中間検査済部分及び出来形部分検査済部分についても検査の対象とする。

(2) 一部しゅん功検査

契約書第38条第1項の規定に基づき、指定部分の工事の完成を確認するための検査をいう。この検査においては、指定部分の中間検査済部分及び出来形部分検査済部分についても検査の対象とする。

(3) 中間検査

施工の中途において、工事の進捗に伴い工事目的物の完成を確認することが困難となるとき、分割して検査を行うことが望ましいとき等総括監督員が検査を行う必要があると認めたときに、その指定する部分に対して行う検査をいう。この場合において、契約書第31条第4項に規定する検査を行った部分についての引渡しを受けるものではない。

(4) 出来形部分検査

契約書第37条第1項に規定する部分払の請求が受注者からなされたときに行う検査

をいい、請負代金相当額の算定に使用される。この場合においては、契約書第 31 条 第 4 項に規定する検査を行った部分についての引渡しを受けるものではない。

2 総括監督員は、前項の(1)から(3)の検査に先立って、受注者に対して検査日を通知するものとする。

1.8.2 しゅん功検査

- 1 検査責任者は、契約書第31条第2項に定める期間内に検査を完了し、当該検査の結果 を受注者に通知するものとする。
- 2 受注者は、しゅん功検査を受けるに先立ち、社内において、当該工事の管理について指導・監督する権限を与えられた社内検査責任者による社内検査を実施するとともに、現場 検査カードを提出しなければならない。
- 3 受注者は、しゅん功検査に必要な資料の提出、測定、足場の設置等について、あらかじめ現場監督員と十分打合せを行い、その指示に従わなければならない。検査用の足場の設置、撤去等については、自らの責任と費用により行わなければならない。
- 4 受注者は、しゅん功検査に必要な人員、機材等を提供しなければならない。
- 5 しゅん功検査の内容

検査員等は、工事目的物の対象として、次に各号に掲げる検査を行うものとする。

(1) 工事の出来形検査

工事の出来形について、形状、寸法、精度、数量、品質及び出来栄えの検査を行う。

(2) 工事管理状況の検査

工事管理状況について、書類、記録及び写真等を参考にして検査を行う。

6 立会人

- (1) 検査員等は、検査に当たり、現場代理人のほか、必要に応じ、当該現場代理人を指導監督する立場にある役職員の臨場を求めることができる。
- (2) 検査員等は、検査に当たり、当該工事の受注者のほか、必要に応じ、当該工事に関連する他の工事の受注者の臨場を求めることができる。

7 修 補

- (1) 検査責任者は、検査の結果、修補を必要と認めたときは不合格とし、受注者に対し、 修補命令書により修補を命ずるものとする。
- (2) 検査員等は、軽微な修補については、現地において、「修補指示書」により修補を指示することができる。この場合、修補の完了をもって合格とする。
- (3) 検査員等は、前号以外のさらに軽微な修補が必要な場合においては、現地において、 口頭で修補を指示することができる。この場合、修補完了後、監督職員の確認を受けな ければならない。
- (4) 受注者は、第1号により、検査責任者から「修補命令書」により修補を命じられたときは、検査責任者に「工事修補請書」を提出し、命じられた期間内に自らの責任と費

用により修補を行い、修補完了後、直ちに「修補完了通知書」を検査責任者に提出し、 検査責任者の再検査を受けなければならない。

- (5) 受注者は、第2号により、検査員等から修補指示書により修補を指示されたときは、 指示された期間内に自らの責任と費用により修補を行い、修補完了後、直ちに修補完了 届を提出し、検査員等の指示する方法により修補完了の確認を受けなければならない。
- (6) 受注者が、第5号の指示された期間内に修補を完了しなかったときには、当社は、 契約書第42条第2項を適用し、工期の翌日もしくは当該「修補指示書」による指示の 日から遅延に対する損害金を徴収することができる。

1.8.3 一部しゅん功検査及び中間検査

- 1 一部しゅん功検査においては、1.8.2 中「工事」とあるのは「指定部分に係る工事」と、「しゅん功検査」とあるのは「一部しゅん功検査」と読み替えて、それぞれ 1.8.2 の規定を適用する。
- 2 中間検査においては、1.8.2 中「工事」とあるのは「中間検査に係る工事」と、「しゅん 功検査」とあるのは「中間検査」と読み替えて、それぞれ 1.8.2 (第7項(6)から(8)まで を除く。)の規定を適用する。

1.8.4 出来形部分検査

1 検査の請求

受注者は、契約書第37条第2項に基づき、部分払いの請求に係る工事の出来形部分の確認を求めるときは、「出来形部分検査請求書」を提出しなければならない。

2 検査結果の通知

発注者は、受注者から前項の確認を求められたときは、遅滞なくその確認のための検査を 行い、その結果を「出来形部分検査認定書」により受注者に通知しなければならない。

- 3 工事出来形部分の検査
 - (1) 受注者は、工事出来形の検査に必要な数量等の算出を行い、提出しなければならない。
 - (2) 受注者は、工事出来形部分検査を行うときは、臨場しなければならない。
 - (3) 受注者は、検査に必要な人員、機材等を提供しなければならない。

第2章 機器及び材料

第2章 機器及び材料

第1節 一般 事項

2.1.1 使用機材

- 1 受注者は、機材の使用に当たり、設計図書で定められた機器及び材料(以下、「機材」という。)を使用しなければならない。この場合において、使用する機材は、仮設機材を除き、新品とする。
- 2 受注者は、施工計画書に機材の品名、規格及び製造業者名を記載しなければならない。
- 3 受注者は、主任監督員が機材の見本又は資料の提出を求めたときは、速やかに提出しなければならない。
- 4 受注者は、機材の製作図を機材製作前に主任監督員へ提出し、承諾を得なければならない。

2.1.2 設計図書で定められた機材以外を使用する場合の特例

- 1 受注者は、設計図書で定められた以外の機材を使用する場合には、使用する前に理由を付した材料使用承諾申請書を監督員に提出し、承諾を得なければならない。
- 2 受注者は、材料使用承諾申請書の提出に当たっては、使用する機材の品質を証明する資料を添付しなければならない。品質を証明する資料として、受注者自らの責任と費用により行った物理的又は科学的試験の成績表を含むものとする。
- 3 受注者は、機材の規格又は品名の違う機材を使用するときは、設計図書で定められた機 材の品質及び機能と同等以上の機材を使用しなければならない。
- 4 受注者は、第1項の機材を使用するときは、その使用に先立ち、外観、形状、寸法等を確認するとともに、品質、機能等を確認する物理的又は科学的試験を行わなければならない
- 5 第2項の試験の方法は、当社電気設備機器標準設計集(以下、「電気設備機器標準設計集」 という。)の試験項目の規程に準じて行う。
- 6 受注者は、新材料等を使用する場合は次の各号に掲げる事項を記載した「新材料・新製品・新工法採用計画書」を提出し、監督職員の承諾を得なければならない。なお、監督職員が採用の可否に際して別途必要と認めた場合は、追加試験等を行わなければならない。本項に基づき承諾を得た新材料等については、「材料使用承諾申請書」は不要とする。
- (1) 使用材料(材料名、規格、製造業者名、適合規格、材料試験等の結果)
- (2) 新材料等の概要
- (3) 施工実績
- (4) 特徴
- (5) 選定理由
- (6) その他必要と認められる事項

2.1.3機材の品質及び規格

- 1 機材の品質及び規格は、特に設計図書で定められているものを除き、電気設備機器標準 設計集、日本工業規格(JIS)、電気学会電気規格調査会標準規格(JEC)、日本電機工業会標 準規格(JEM)、日本照明器具工業会規格(JIL)、日本電線工業会規格(JCS)に適合したもの 又はこれと同等以上の品質を有するものをいう。
- 2 受注者は、工事に使用する機材の品質を証明する資料を受注者の責任において整備、保 管し、現場監督員から請求があった場合は、直ちに提示するとともに、検査時に提出しな ければならない。

2.1.4 機材検査

- 1 機材検査とは、型式検査、工場立会検査及び現場受入検査をいう。
- (1) 型式検査

当社が、電気設備機器標準設計集に定められた機材に対して、製造会社からの申請により、 製作工場に臨場して機材の品質及び製作工場の検査体制等を確認する検査

(2) 工場立会検査

受注者が、機材の製造会社の工場に臨場して、使用機材の品質と数量を確認する検査。

(3) 現場受入検査

受注者が、使用機材を現場搬入時において、品質と数量を確認する検査。

- 2 型式承認検査
- (1) 型式検査
- イ ISO 9000S (9001、9002) 認証を取得していることを前提とする。
- ロ型式承認検査の実施
- a)型式承認検査を新規に申請する場合
- ①「電気設備機器標準設計集」に定める試験及び検査に従い「型式承認検査実施計画書」を 技術管理室長宛に提出する。
- ② 当社型式検査担当職員は、提出された同上実施計画書を審査し、「型式検査実施要領書」を定め、同要領書を機材製造会社に通知する。
- ③ 当社検査担当職員は、申請のあった機材製造会社の工場に臨場し、型式検査実施要領書に基づき検査する。
- ④合否の判定は電気設備機器標準設計集に規定している各種試験の結果及び機材製造工場の検査体制等を審査して行う。
- ⑤判定の結果合格と認定した場合、機材製造会社に対して5年の有効期限を設けた製造工場 指定の合格証を交付する。
- b)型式認定品の継続を申請する場合
- ①有効期限満了の3ヶ月前までに「型式認定品継続検査申請書」を技術管理室長宛に提出する。

- ②継続検査申請書に基づき機材製造工場へ臨場し検査を行う。但し、申請書における過去の 製造実績等を審査して型式検査を省略することが出来る。
- ③検査又は書類審査の結果、合格と認定した場合、継続検査合格証を交付する。
- 3 工場立会検査

受注者が行う機材検査及び確認は、以下の手順により実施する。

- イ 受注者は、使用機材の性能・品質が確認できる「検査項目」、「検査方法」、「検査合格判定基準」、「検査場所」、「検査予定日」、「工事機材検査体制」等を記載した、「工事機材検査実施手順書」を定め、製作図の提出と合わせ、主任監督員に提出するものとする。
- ロ 受注者は、「工事機材検査実施手順書」を主任監督員に提出し、工場立会検査に監督職員の臨場の有無について確認する。受注者は工場立会検査において監督職員が臨場する場合は立会検査の事前に「工事材料検査請求書」を製造業者の製品検査成績書を添付し主任監督員に提出しなければならない。
- ハ 上記口において、受注者は、工事機材検査実施手順書に基づき機材検査を実施し、その 結果を主任監督員に報告するものとする。
- ニ 機材検査結果の報告時期

工事機材検査実施後、速やかに監督職員へ報告するものとする。

- ホ 報告の内容
 - a) 「工事機材検査実施手順書」で定めた検査項目
 - b) 良否の判定及びその根拠
- へ 報告書の添付資料
 - a) 検査結果の考察
 - b) 検査状況及び機材品質確認写真
 - c) その他使用機材の品質が確認できる資料
- ト 受注者は、下記項目に該当する使用機材の場合、製造会社の社内製品検査成績書及び素 材の規格証明書の確認をもって、工場立会検査を省略できる。
- a) JIS 表示品
- b) 現場受入検査時に機材の品質検査が可能である。
- チ 受注者は、工場立会検査の実施を省略する場合、その理由を工事機材検査実施手順書に 明記して、主任監督員に提出する。
- リ 受注者は、下記項目に該当する場合、当社職員の臨場を受けなければならない。
 - a) 設計図書で工場立会検査の臨場を明記している場合。
 - b)使用機材の性能、品質が製造工場でのみ確認可能な場合。
 - c) 電気保安上、工場での使用機材性能試験が必要な場合。
 - d) その他主任監督員の指示があった場合。
- 4 現場受入検査
 - (1) 受注者は、社内検査成績書、製造業者の社内検査成績書、素材の規格証明書及びその

他必要な品質を証明する書類の確認をもって、現場受入検査を実施しなければならない。 (2) 受注者は、主任監督員が必要と認めた機材について、監督職員の臨場のうえ現場受入 検査を実施しなければならない。

2.1.5 工事機材検査責任者

受注者は、工場立会検査、現場受入検査の実施に当たり、事前に「工事機材検受注者は、工場立会検査、現場受入検査の実施に当たり、事前に「工事機材検査責任者」を定め、主任監督員に提出しなければならない。なお、「工事機材検査責任者」の任に当たる者は、機材の品質管理業務に精通し、その指導力が十分に発揮できる地位にあるものとする。

2.1.6 品質の保証

受注者は、2.1.4の規定により機材検査に合格した機材であっても、品質保証に係る受注者の責任は免除されない。

2.1.7 機材の保管等

- 1受注者は、機材の品質又は機能が損なわれないように良好に整理、保管しなければならない。
- 2 受注者は、機材の運搬又は保管中に損傷、変質等が生じ、主任監督員がその使用について 不適当と認めたときは、速やかに取り替えなければならない。

2.1.8 再検査

受注者は、2.1.4の機材検査に不合格となったとき又は2.1.7第2項の規定により機材を取り替えるときは、2.1.4を準用して再検査を受けなければならない。

第3章 共通工事

第3章 共通工事

第1節 一般 事項

- 3.1.1 適用範囲
 - 1 この章は、仮設工事、土工事、コンクリート工事、塗装工事、機械設備工事に適用する。
 - 2 この章に定めのない事項については、次によるものとする。
 - (1) 土木工事共通仕様書
 - (2) 建築工事共通仕様書
 - (3) 機械設備工事共通仕様書

第2節 仮 設 工 事

3.2.1 一 般

受注者は、工事の施行に先立ち、現地状況、地下埋設物及び近接構造物に関する事前調査等 仮設工事に必要な検討を行い、施工方法を記載した作業計画書を作成し、主任監督員に提出し なければならない。

3.2.2 材 料

- 1 材料は、原則として「土木材料共通仕様書」に定めているものを使用するものとする。ただし、やむを得ず他の材料を使用する必要が生じたときは、主任監督員の承諾を得なければならない。
- 2 使用する材料は、所定の強度、断面寸法及び長さを有するものでなければならない。
- 3 断面の変形、欠損、ねじれ、曲がり等のある材料は、使用してはならない。

3.2.3 施 工

- 1 仮設構造物は、関係法令に従い、適切な材料、構造のものとする。
- 2 受注者は、定置した足場、仮桟橋、仮囲等を他の関連受注者に無償で使用させるものとする。

第3節 土 工 事

3.3.1 一 般

受注者は、工事の施行に先立ち、工事現場及びその周辺の地形並びに地質等を調査し、工事の施工中に不測の事態が生じないように努めなければならない。

3.3.2 材 料

材料は、原則として「土木材料共通仕様書」に定めているものを使用するものとする。ただし、やむを得ず他の材料を使用する必要が生じたときは、主任監督員の承諾を得なければならない。

3.3.3 施 工

1 掘 削 工

- (1) 掘削は、工事現場及びその周辺状況、地質、湧水の状態等に対応した工法で行い、 掘削箇所には、その規模に応じて土砂が崩壊しないように関係法令等に従い適切な法面 をつけるか、山留めを設けなければならない。
- (2) 掘削の施工に起因して周辺の地盤が沈下又は陥没することがあるので、付近に構造物又は地下埋設物があるときは、これらを点検し、かつ、十分注意して施工しなければならない。
- (3) 掘削完了後は、位置、深さ、床付面等について担当監督員の検査を受けなければならない。

2 埋戻し及び盛土工

- (1) 埋戻しに先立ち、埋め戻し部分にある型わく等を取り除くものとする。
- (2) 埋戻し及び盛土材料は、良質土を使用するものとし、締固め後の仕上がり厚さは、 路体部分では30 cm以下、路床部分では20 cm以下とし、現地の地形に応じた適当な転圧 機械等を使用し、所定の締め固め度を得るよう盛土材料の含水量等の調整を行って十分 に締め固めしなければならない。また、埋戻しに先立って、埋戻し箇所の排水をしなけ ればならない。
- (3) 地中埋設管路の埋戻しは、埋設構造物に悪い影響を与えないよう構造物の両側から 同時に埋め戻し、均一に締め固めしなければならない。幅が狭い場所及び土被りの少な い場所では、特に慎重に施工しなければならない。

3 残土処分

掘削の施工に伴って発生した残土は、残土処理場において適切に処理しなければならない。

4 割石及び玉石地業

- (1) 割石及び玉石地業に使用する割石及び玉石は、硬質のものとし、目つぶし砂利は、切込み砂利又は切込み砕石とする。
- (2) 割石及び玉石地業は、原則として一層とし、大きなすき間のないようにして行い、 敷並べ後、目つぶし砂利をてん充し、締め固める。
- (3) 締め固めは、ランマー3回突き、ソイルコンバター2回締め又は振動ローラー締め程度とし、十分に締め固めなければならない。ただし軽易な構造物の基礎で、監督職員の指示した場合のものにあっては、手だこ2回突き程度とすることができる。
- (4) 締め固めの幅は、用具の幅以内とし、締め固めによる凹凸は目つぶし砂利で上ならしする。

5 捨コンクリート地業

捨コンクリート地業は、コンクリート設計基準強度 150 kg/cm 3 とし、第 4 節コンクリ

ート工事によって施行する。この場合において、骨材は、粗骨材を 25 mm以下の砂利又は 砕石とし細骨材を砂とする

第4節 コンクリート工事

3.4.1 一 般

コンクリート工事は、工事現場練りコンクリート又はレデーミクストコンクリートを 使用して施工しなければならない。

3.4.2 材 料

- 1 セメントは、JIS R 5210(ポルトランドセメント)による普通ポルトランドセメントとする。
- 2 骨材は、普通骨材で粗骨材は砂利又は砕石、細骨材は砂とし、砕石は、JIS A 505(コンクリート用砕石)によらなければならない。
- 3 骨材の大きさは、砂利 25 mm以下、砕石 20 mm以下とし、基礎等で断面が大きく鉄筋量の 比較的少ない場合の砂利は 40 mm以下とする。
- 4 鉄筋は、JIS G 3112 (鉄筋コンクリート用棒鋼)の規格に適合したものでなければならない。
- 5 型枠は、木製、金属製等とし、作業荷重、コンクリートの自重及び側圧、振動等の外力 に耐え、かつ有害なひずみ、狂い等が生じない構造のものでなければならない。
- 6 せき板は、次の各号によらなければならない。
 - (1) 厚さ 12 mmのコンクリート型枠用合板
 - (2) 枠組パネル
 - (3) 厚さ12mm以上で、そば合いじゃくり表面かんな削り仕上げの板材

3.4.3 施 工

- 1 工事現場練りコンクリート工事
 - (1) 工事現場練りコンクリートの製造は、機械練りによって行うものとする。ただし、 使用するコンクリート量が少なくかつ主任監督員の承諾を受けた場合は手練りにて 行うことができる。
 - (2) 袋入りセメントを使用する場合は、資材倉庫にて保管し、セメントを積み重ねせずかつ10袋を越えての長期保管は原則として行ってはならない。
 - (3) コンクリートの練り混ぜは、機械練りの場合には材料をミキサーに一括して投入し、 1分以上の練り混ぜを行い、手練りの場合では砂とセメントのから練りを3回以上、 砂利と水を加えた水練りを3回以上行わなければならない。
 - (4) コンクリートの打込は、次によらなければならない。

イ 打設場所、運搬装置、打込設備及び型枠内を清掃し、型枠を十分ぬらした後、打設

すること。

- ロ 月平均気温が 25℃以上を越える時期又は日平均気温が 4℃以下になること が予想される場合は、それぞれの対策を講じた方法にて施工しなければならない。
- ハ 気象条件によりコンクリート打込み作業を中止又は中断したときは、主任監督員に 報告すること。
- ニ 練混ぜ後 90 分以内に打設すること。ただし、月平均気温が 25 \mathbb{C} 以上を越える時期 では 60 分以内とする。
- ホ 根切り内の水がコンクリートの打込み、養生に影響を与えないよう適切な措置を講 ずること。
- (5) コンクリート打設後の養生は、次によること。
 - イ 打込み後、原則として3~8日間程度養生すること。この場合において低温、急激 な温度変化、風、乾燥、荷重、衝撃等の有害な影響を受けないようにすること。
 - ロ 特殊な養生を行う場合は、あらかじめ主任監督員の承諾を得ること。

2 鉄筋工

- (1) 鉄筋の加工は常温で行い、その加工における端末部、中間部継手及び定着は表 3.4.1 から表 3.4.3 にて行うものとする。
- (2) 鉄筋の最小かぶりは30mmとする。

表 3.4.1 末端部の加工

曲げ	折曲げ図	SI	R 24	SD 30	使用箇所
角度	7月四07四	SI	24	SD 35	
1000		D	3d 以上	4d 以上	+ > +<
180°		1	11d 以上	12d 以上	柱、はりの主筋及び杭基礎のベース筋並びに径 16 mm以上の鉄筋
135°		D	3d 以上	4d 以上	径 13 cm以下の鉄筋並びにあば ら筋、帯筋、スパイラル筋及び床版
133		1	3d 以上	12d 以上	筋
90°		D	12d 以上	4d 以上	
30		1	3d 以上	12d 以上	T形及びL形はりのあばら筋
		D	3d 以上	4d 以上	
135° 90°		1	8d 以上	8d 以上	
		ζ	9d 以上	10d 以上	幅止め筋

表 3.4.2 中 間 部

曲げ	折曲げ図	S	R24	SD30	使用箇所
角度	が囲り凶	S	D24	SD35	(大川 直川
		D	3d 以上	4d 以上	あばら筋、帯筋、スパイラル筋
		D	5d 以上	5d 以上	径 16 mm以下の床版筋、壁筋
90°以下		D	6d 以上	6d 以上	上記以外の鉄筋で、丸鋼は 28 mm以下、異形鉄筋は D25 以下
		D	8d 以上	8d 以上	上記以外の鉄筋で、丸鋼は 32 mm以下、異形鉄筋は D29 以上 D41 以下

表 3.4.3 鉄筋の継手及び定着の長さ

	設計基準	フックなし				フックあり			
鉄筋の 種 別	強度	C	S_2	S_3		S_1	C	S_3	
1至 刀1	Fo (kg/cm^2)	S_1	\mathcal{S}_2	小ばり	床版	S 1	S_2	小ばり	床版
SR24	210 以上	_	_	_	_	35d	35d	25d	150
31/24	270 未満	_				330	33u	23u	mm
SD24	210 以上	30d	25d	25d	10d 且つ	20d	15d	15d	_
3024	270 未満	50d	29u	29u	150 mm以上	20u	134	150	
SD30	210 以上	40d	35d	25d	10d 且つ	30d	25d	15d	
SD35	270 未満	400	oou	290	150 mm以上	30a	20 u	190	

注 d:鉄筋の公称直径

D:曲げ内のり直径

L:フック部分の長さ

S1:継手及び定着の長さ

S2: 割裂破壊のおそれのない箇所の定着長さ

S3:小ばり及び床版の下端筋の定着長さ

3 型 枠 工

- (1) 型枠の材料に古材を使用する場合は、3.4.2を満足したものでなければならない。また再使用にあたっては、せき板表面を十分清掃しなければならない。
- (2) 型枠の組立は、対象となる構造物の位置、形状、寸法に合わせて正確に行い、コンクリートの打込みによって変形、破損が生じないように十分な強度を持ったものでなければならない。

(3) 型枠の取外しは表 3.4.4 の存置日数を経過後でなければならない。

表 3.4.4 存置期間

	存置期間中の平均気温						
	0℃以上 5℃以上 15℃以上						
存置日数	8	5	3				

第5節 塗 装 工 事

3.5.1 一般

この節は、現場で施工する電気設備の塗装工事に適用するものとする。ただし、次の各号については、原則として塗装工事を行わないものとする。

- (1) コンクリート又は地中に埋設される箇所
- (2) いんぺいされる部分のメッキ箇所
- (3) 露出される部分の亜鉛メッキ以外のメッキ箇所
- (4) アルミニウム、ステンレス、銅、耐錆性鋼板、合成樹脂等の防錆耐力のある材料を 使用した箇所
- (5) 特殊な意匠的表面仕上げ処理を施した箇所

3.5.2 材 料

- 1 塗料は、JIS 規格に適合したものより選定するものとする。
- 2 塗料は、製造後12ケ月以内のものを使用しなければならない。
- 3 塗料は、調合されたものを使用するものとする。ただし、素地面の粗密、気温の高低 等に応じて、塗装に適するように調整する。
- 4 希釈材は、塗料と同一製造業者の製品を使用しなければならない。

3.5.3 施 工

- 1 塗装工事は、次の各号に示す場合には施工してはならない。ただし、塗装場所が屋内で 温度、湿度等の調整条件がみたされている場合には、屋外条件に関係なく作業できるもの とする。
 - (1) 気温が 5℃以下の場合。ただし、タールエポキシ樹脂塗料はあっては気温 10℃以下 の場合
 - (2) 湿度 85%以上の場合
 - (3) 降雨、降雪又は強風の場合
 - (4) 塗膜の乾燥前に温度の急変、降雨又は降雪等のおそれのある場合
 - (5) その他主任監督員が不適当と認めた場合
- 2 塗料は十分攪拌して使用しなければならない。

- 3 密閉された場所で塗装するときは、換気に十分注意して行わなければならない。
- 4 塗装に当たって、あらかじめ塗布面を十分清掃しておかなければならない。

3.5.4 素地ごしらえ

素地ごしらえは、次の各号によって施工しなければならない。

- (1) 素地ごしらえは、塗装に先立って行う。
- (2) 鉄面の素地ごしらえは、表 3.5.1 により、特記がなければ C種とする。

表 3.5.1 鉄面の素地ごしらえ

	工程	ź	種 別		# 0) 処 置	按 邢
		A 種	B種	C種	山 山		摘要
1	汚れ、 付着物 除去	0	ı	0	スクレーバ、 ワイヤブラシ等	_	
2	油類除去	0	_	_	揮発油拭き、7 ルカリ性液加熱 水洗い	_	
		_	0	0	揮発油拭き		
		0	_	_	酸づけ、中和、	湯洗いにより除去	
		_	0	_	ブラスト法によ	にり除去	放置せず
3	錆落とし	_	-	0	ディスクサンタ・一又はスクレーハ、、 ワイヤフ・ラシ、研磨紙 #100~180 で除去		次の工程に 移る
4	化学処理	0		Ι	りん酸塩溶液に浸りん酸塩処理せき処理後湯洗い乾燥		_

(注) A種の場合は工程 4、B種の場合は工程 3 の後放置せず、直ちにショッププライマー塗りを行い、次の工程に移る。ただしショッププライマーは、上塗りに適したものとする。

表 3.5.2 亜鉛メッキ面の素地ごしらえ

		塗料その他		規格		塗布量		
	工程	規格	規格		面の処理	kg/m²	摘要	
		番号	番号 名称 種別		KS/ III			
	汚れ、							
1	付着物	_	_	_	スクレーバ、ワイヤブラシ等で除去	_	_	
	除去							

2	油類除去	_	_	_	揮発油拭き、石鹸水洗い 又は弱アルカリ性液加熱 処理湯洗い 水洗い	_	_
3	化学処理	JIS K 5633 の規格品	エッチンク゛フ゜ ライマー	1種	1 回塗り		放置せず 次の工程に 移る。

3.5.5 はけ塗り及び吹付塗工法

- 1 はけ塗りは、色境、出隅、入隅等に注意し、はけ目正しく、塗落とし、たまり、流れ、あわ等が生じないようにして均一な塗膜厚になるように入念に行わなければならない。
- 2 吹付け塗りは、塗装用スプレーガンを用いて、滑らかな平面又は均一な塗面を得るよう に注意し、吹残し、吹むら、流れ、あわ等が生じないようにして、均一な塗膜厚になるよ うに入念に行わなければならない。

3.5.6 さび止め塗料塗り

- 1 さび止め塗料種別は、次の各号による。
 - (1) 鉄面さび止め塗料の種別は、表 3.5.3 による。

なお、さび止め塗料の規格種別は、上塗りに合わせる。ただし、素地ごしらえが C種で、規格種別に 1 種、C 種の別がある場合は、C 1 回目を C 1 種とする。

表 3.5.3 鉄面さび止め塗料の種別

		さび止め塗料その他			
種別	規格番号	規格名称	規格種別	塗布量	摘要
	別俗番 ケ	风俗石柳 	7兄1台1里万月	(kg/m^2)	
		下記のいずれかによる。			
	JIS K 5622	鉛丹さび止め	1種	0. 19	
	の規格品	ペイント	2種	0.14	
	JIS K 5623	亜鉛化鉛	1種	0. 11	
A 種	の規格品	さび止めペイント	2種	0.10	屋内
	JIS K 5624	塩基性クロム酸鉛	1種	0. 11	(露出)
	の規格品	さび止めペイント	2種	0.10	
	JIS K 5625	シアナミド鉛	1種	0. 11	
	の規格品	さび止めペイント	2種	0.10	

B 種	JIS K 5621 の規格品	一般用 さび止めペイント	1種	0.11	屋外 (隠ぺ い)
-----	--------------------	--------------	----	------	-----------------

(2) 亜鉛メッキ面さび止め塗料の種別は、表 3.5.4 による。

表 3.5.4 亜鉛メッキ面さび止め塗料の種別

	さび止め塗料その他								
規格番号	規格名称	規格種別	塗布量 (kg/m²)	摘要					
JIS K 5627 の規格品	ジンククロメート さび止めペイント	A	0.09	屋内					
JIS K 5629 の規格品	鉛酸(なまりさん) カルシウム さび止めペイント	_	0. 12	屋外					

- 2 さび止め塗料塗りは、次の各号により施工しなければならない。
- (1) 鉄面さび止め塗料塗りは、表 3.5.5 により、特記による。特記がなければ、見え掛かり部分は A 種とし、見え隠れ部分は B 種とする。

表 3.5.5 鉄面さび止め塗料塗り

	工程		種別		塗料その他	
			B種	規格番号 規格名称		(kg/m^2)
	素地ごしらえ	0	0	3.5.4による		_
1	さび止め塗料塗り (下塗り1回目)	0	0	3.5.6による		表 3. 5. 3
2	研磨紙ずり	0	_	#120~180		_
3	さび止め塗料塗り (下塗り2回目)	0	0	工程1に同じ		表 3.5.3

(2) 亜鉛メッキ面さび止め塗料塗りは、表3.5.6により、特記による。特記がなければ、 鋼性の建具はA種とし、その他はB種とする。

表3.5.6 亜鉛メッキ面さび止め塗料塗り

	工、程		別	塗料その他		塗布量
上 程		A 種	B種	規格番号 規格名称		(kg/m^2)
	素地ごしらえ		0	3. 5. 4 による		_
1	さび止め塗料塗り (下塗り1回目)	0	0	3.5.6による		表 3. 5. 4
2	研磨紙ずり	0	_	#180~240		_
3	さび止め塗料塗り (下塗り2回目)	0	0	工程1に同じ		表 3.5.4

3.5.7 合成樹脂調合ペイント塗り

合成樹脂調合ペイント塗りは、次の各号によらなければならない。

- 1 合成樹脂調合ペイント塗りの塗料種別は、特記がなければ、屋外は2種とし、屋内は1種とする。
- 2 鉄面合成樹脂調合ペイント塗りは、表 3.5.7 により、特記がなければ B 種とする。

表 3.5.7 鉄面合成樹脂調合ペイント塗り

		種別		塗料そ	塗布量	
	工程	A 種	B種	規格番号	規格名称	(kg/m^2)
Č	さび止め塗料塗り	3.5.6による				_
1	穴埋めパテ飼い	0	0	JIS K 5647	カシュ樹脂パテ	_
1	八里》八月间八	0	0	JIS K 5592	オイルパテ	_
2	研磨紙ずり 又は水研ぎ	0	0	研磨紙又は耐水研磨紙 #180~240		_
3	中塗り (1回目)	0	0	JIS K 5516 の規格品	合成樹脂調合ペイント	0. 09
4	研磨紙ずり 又は水研ぎ	0	0	研磨紙又はm #180~		_
5	中塗り (2回目)	0	I	JIS K 5516合成樹脂調合の規格品ペイント		0. 09
6	研磨紙ずり 又は水研ぎ	0	_	研磨紙又は耐水研磨紙 #180~240		_

7	上塗り	0	0	JIS K 5516 の規格品	合成樹脂調合ペイント	0.08
---	-----	---	---	--------------------	------------	------

3 亜鉛メッキ面合成樹脂調合ペイント塗りは、表 3.5.8 による。

表 3.5.8 亜鉛メッキ面合成樹脂調合ペイント塗り

	工程	塗	料その他	塗布量
	上	規格番号	規格名称	(kg/m^2)
	さび止め塗料塗り	3.5.6による		_
1	穴埋めパテ飼い	JIS K 5647	カシュ樹脂パテ	_
1	八里叭,	JIS K 5592	オイルパテ	_
2	研磨紙ずり	#1	80~240	_
3	中塗り	JIS K 5516 の規格品	合成樹脂調合ペイント	0.09
4	研磨紙ずり	#1	80~240	_
5	上塗り	JIS K 5516 の規格品	合成樹脂調合ペイント	0. 09

第 6 節 機械設備工事

3.6.1 一般

機械設備工事は、「機械設備工事共通仕様書」による。

第4章 屋内配線工事

第 4 章 屋内配線工事

第1節 一般 事項

4.1.1 電圧降下

- 1 屋内配線工事において、引込口から分岐過電流遮断器に至る配線の区間(以下「幹線」という。) 及び幹線から分岐し負荷に至る配線の区間(以下「分岐回路」という。)での電圧降下率は、原 則として、それぞれ標準電圧の2%以下とする。ただし、電気使用場所に変圧器(以下「供給変 圧器」という。)を設置し、それから幹線が敷設される場合での幹線の電圧降下率は、3%以下 とする。
- 2 引込口又は供給変圧器の二次側端子から最遠端の負荷までの電線のこう長が60mを越える場合 の電圧降下は、下記の表による。

供給変圧器の二次側端子又は引 込線取付点から最遠端の負荷に 至る間の電線のこう長 (m)	電 圧 電 電 圧 電気使用場所内に設けた変 圧器から供給する場合	降 下 電気事業者から低圧で 電気の供給を受けてい る場合
60~120 以 下	5以下	4以下
200 以 下	6以下	5以下
200~超 過	7以下	6以下

3 回路の電気方式別による各々の電圧降下は、表4.1.1の式にて算出する。

表4.1.1電気方式と電圧降下

回路の電気方式	電圧降下
直流2線式、単相2線式	$e = \frac{35.6 \times L \times I}{1,000 \times A}$
三相3線式	$e = \frac{30.8 \times L \times I}{1,000 \times A}$
直流3線式、単相3線式、 三相4線式	$e' = \frac{17.8 \times L \times I}{1,000 \times A}$

注 本表は各相電流が平衡している場合のものである。

e :各線間の電圧降下 (V)

e':中性線との間の電圧降下(V)

A :電線の断面積 (mm 2)

L : こう長 (m) I : 電流 (A)

4 電圧降下と電圧降下率との関係は、次式に示すものによる。

電圧降下率 =
$$\frac{$$
電圧降下 \times 100 (%)

4.1.2 許容電流

1 屋内配線工事において、選定した電線の種別、形状、配線工事方法及び周囲温度によって決まる電線の許容電流は、接続された負荷の定格負荷電流より大きな値を保たなければならない。

- 2 配線に使用する電線の絶縁物の最高許容温度は、配線場所の周囲温度より高い値でなければならない。
- 3 電線の種別、形状、配線工事方法及び周囲温度によって決まる電線の許容電流は、表4.1.2~表 4.1.9に示すものによる。

表4.1.2 がいし引き配線により絶縁物の最高許容温度が60℃のIV電線などを 施設する場合の許容電流

(周囲温度30℃以下)

	導体 (銅)		
単線、より線の別	公称断面積 (mm²)	素線数/直径 (本/mm)	許容電流(A)
単	_	1. 0	(16)
	_	1. 2	(19)
	_	1. 6	27
	_	2. 0	35
線	_	2. 6	48
	_	3. 2	62
	_	4. 0	81
	_	5. 0	107
ţ	0. 9	7/0. 4	(17)
	1. 25	7/0. 45	(19)
	2	7/0. 6	27
	3. 5	7/0. 8	37
	5. 5	7/1. 0	49
	8	7/1. 2	61
	14	7/1. 6	88
ŋ	22	7/2. 0	115
	38	19/2. 6	162
	60	19/2. 0	217
	100	37/2. 6	298
線	150 200 250 325 400 500	37/2.3 $61/2.6$ $61/2.3$ $61/2.6$ $61/2.9$ $61/3.2$	395 469 556 650 745 842

[備考] 直径1.2mm以下及び断面積1.25mm2以下の電線は、一般には配線に使用する電線として 認められていない。したがって、() 内の数値は参考に示したものである。

内線規程 JEAC 8000-2000

1編 総 則

1編3章 保安原則

1340節 許容電流

1340-1 絶縁電線などの許容電流

表4.1.3 Wケーブル並びに電線管などに絶縁物の最高許容温度が60℃の

IV電線などを収める場合の許容電流

VVケーブル配線、金属管配線、合成樹脂管配線、金属製可とう電線管配線、金属線び配線、合成樹脂線 び配線、金属ダクト配線、フロアダクト配線及びセルラダクト配線などに適用する。この場合において、金属ダ クト配線、フロアダクト配線及びセルラダクト配線については、電線数「3以下」を適用する。

(周囲温度30℃以下)

電線種	電線種別と電線数 について 導体				許	容 電	流(A	١)		
単線・より線	直径又は	ţ	VVケーフ゛ル	IV電線	を同一の	管、線ぴ	又はダクト៲	内に収める	る場合の電	
の別	公称断面	積	3心以下	3以下	4	5~6	7~15	16~40	41~60	61以上
	1.	2mm	(13)	(13)	(12)	(10)	(9)	(8)	(7)	(6)
単	1.	6mm	19	19	17	15	13	12	11	9
	2.	Omm	24	24	22	19	17	15	14	12
線	2.	6mm	33	33	30	27	23	21	19	17
	3.	2mm	43	43	38	34	30	27	24	21
	5.	$5\mathrm{mm}^2$	34	34	31	27	24	21	19	16
	8	${\bf mm}^2$	42	42	38	34	30	26	24	21
	14	${\bf mm}^2$	61	61	55	49	43	38	34	30
Ŀ	22	mm^2	80	80	72	64	56	49	45	39
よ	38	\mathbf{mm}^2	113	113	102	90	79	70	63	55
	60	\mathbf{mm}^2	150	152	136	121	106	93	85	74
り	100	mm^2	202	208	187	167	146	128	116	101
	150	mm^2	269	276	249	221	193	170	154	134
線	200	\mathbf{mm}^2	318	328	295	262	230	202	183	159
	250	\mathbf{mm}^2		389	350	311	272	239	217	189
	325	\mathbf{mm}^2	435	455	409	364	318	280	254	221
	400	mm^2	_	521	469	417	365	320	291	253
	500	mm^2	_	589	530	471	412	362	328	286

[備考] 直径1.2mm以下及び断面積1.25mm2以下の電線は、一般には配線に使用する電線として 認められていない。したがって、() 内の数値は参考に示したものである。

内線規程 JEAC 8000-2000

1編 総 則

1編3章 保安原則

1340節 許容電流

1340-1 絶縁電線などの許容電流

表4.1.4 HIVの許容電流

導	体	同一管、線ぴ又はダクト内に収める電線本数					
単線	より線	3以下	4	5~6	7~15	16~40	
(mm)	(\mathbf{mm}^2)		許	容 電 流	A		
1.6		23	20	18	15	14	
2.0		29	26	23	20	18	
	5. 5	41	37	32	29	25	
	8	51	46	41	36	31	
	14	74	67	59	52	46	
	22	97	87	78	68	59	
	38	137	124	109	96	85	
	60	185	165	147	129	113	
	100	253	228	203	178	156	
	150	336	303	269	235	207	
	200	400	359	319	280	246	
	250	474	427	379	331	221	
	325	555	498	444	307	341	

注 周囲温度が30℃で、絶縁物の最高許容温度が75℃の場合を示す。周囲温度が30℃を超える場合 には、上表の値に

$$\frac{1}{1.22}\sqrt{\frac{75- heta}{30}}$$
 を乗ずる($heta$ は周囲温度)。

表4.1.5 ケーブルラック配線の場合のケーブル許容電流(A)

敷設	600V	VVケー	·ブル	600V	CVケー	·ブル	61	xVケーブ/	·レ
│ \ 条件	単心	2心	3心	単心	2心	3心	単心	3心	トリプ゜レック
									ス
導体 \	3条敷設	1条	敷設	3条敷設	1条	敷設	3条敷設	1条	敷設
	S=2D			S=2D			S=2D		
mm									
1.6	20	18	15						
2.0	26	23	20						
\mathbf{mm}^2									
2.0	20	18	15	31	28	23			
3. 5	28	25	21	44	39	33			
5. 5	37	33	28	58	52	44			
8	47	42	36	72	65	54	78	61	
14	66	59	50	100	91	76	105	83	
22	88	78	66	130	120	100	140	105	120
38	120	110	93	190	170	140	195	145	170
60	165	145	120	255	225	190	260	195	225
100	230	200	165	355	310	260	355	265	310
150	295	255	220	455	400	340	455	345	405
200	350	310	260	545	485	410	540	410	485
250	400	355	300	620	560	470	615	470	560
325	470	420	355	725	660	555	720	550	660

- 注 1 Sは1ケーブルの中心間隔を示す
 - 2 Dはケーブルの外径を示す。
 - 3 ケーブルの基底温度は40℃とする。

内線規程 JEAC 8001-2000

資料1-3-3

表4.1.6 耐火ケーブルの許容電流値(EVケーブルより抜粋)

(単位:A)

敷設	空中	、暗渠	敦設	直	妾埋設敷	設		管路引力	へれ敷設	
条件	単心	2心	3心	単心	2心	3心	単心	2心	3心	単心
公称	3条敷設	1条	1条	3条敷設	1条	1条	4孔3条	4孔4条	4孔4条	6孔6条
断面積	s =2d	敷設	敷設	s =2 d	敷設	敷設	敷設	敷設	敷設	敷設
mm										
1.0	15	14	11	20	20	17		13	11	
1.2	19	17	14	25	25	21		16	14	
1.6	26	24	20	34	35	29		23	19	
2.0	35	31	26	44	45	38		29	24	
2.6	48	43	36	59	61	51		40	33	
3. 2 mm ²	62	55	47	74	77	64		50	42	
mm ²	0.			0.4	0.=					
4.0	27	24	20	34	35	29		22	19	_
3. 5	37	33	28	47	48	40		31	26	_
5. 5	49	44	37	59 70	62	52		40	34	
8	62	56	47	73	76	62		50	41	
14	86	77	65	99	100	87		68	56	
22	115	100	87	125	135	110		88	73	
38	160	145	120	170	180	150		120	99	
60	215	195	160	220	235	195		155	125	945
100	300	265	220	290	310	255	280	200	165	245
150	390	345	290	365	390	$\frac{325}{375}$	350	255 300	210	300
200 250	465 530	$\frac{415}{475}$	$\frac{350}{405}$	420 470	455 510	420	410 460	335	245 275	355 395
325	620	565	405	540	585	480	530	380	315	450
400	695	303	410	600	303	400	585	360	313	500
500	780			665			650			550
600	855			715			700		l _	595
800	1, 100			885		_	870		_	735
1,000	1, 250		<u> </u>	980		_	970		_	810
基底温度		40℃			5℃			25	$^{\circ}\mathbb{C}$	ı
導体温度		75℃			5℃			75	$^{\circ}$ C	

- 注1 Sは、ケーブルの中心間隔又は管路間隔を示す。
 - 2 dは、ケーブルの外径又はパイプ外径を示す。

表4.1.7 耐火ケーブルの許容電流値(EVケーブルより抜粋) (単位:A)

敷設	空中、時	音渠布設	管路引え	へれ布設	
条件	単心	単心	単心	単心	
	2個より	3個より	2個より	3個より	
公称 断面積	1条敷設	1条敷設	4孔4条 敷設	4孔4条 敷設	
mm ²					
14	78	73	69	60	
22	100	97	89	78	
38	145	135	120	105	
60	190	180	155	135	
100	265	245	205	180	
150	340	325	260	225	
200	420	395	305	260	
250	485	460	345	295	
325	575	545	395	335	
400	650	620	435	370	
500	750	710	485	425	
基底温度	40	$^{\circ}$	25	$^{\circ}$	
導体温度	75	$^{\circ}$ C	75℃		

(JCS 0168-1:1996による。)

表4.1.8 絶縁電線の許容電流補正係数

絶縁電線の	絶縁電線の種類及び施設場所の区分			許容電流減少係数計算式
600Vビニル	絶縁電線(IV)	60	1.00	$R = \sqrt{\frac{60 - \theta}{30}}$
	・ル絶縁電線(HIV) チレン絶縁電線	75	1. 22	$R = \sqrt{\frac{75 - \theta}{30}}$
エチレンプ	ロピレンゴム絶縁電線	80	1. 29	$R = \sqrt{\frac{80 - \theta}{30}}$
600V架橋ポ	リエチレン絶縁電線	90	1.41	$R = \sqrt{\frac{90 - \theta}{30}}$
600V ケイ素ゴム 絶縁ガラス	電線又はこれを収める金属管などに接触し又は接近する造営材が電線の温度上昇により有害な影響を受ける恐れがなく、かつ電線管などに人が触れる恐れがない場所	180	2. 24	$R = \sqrt{\frac{180 - \theta}{30}}$
編組電線	上記以外の場所	180	1.41	$R = \sqrt{\frac{90 - \theta}{30}}$
600V ふっ素樹脂	電線又はこれを収める金属管などに 接触し又は接近する造営材が電線の 温度上昇により有害な影響を受ける 恐れがなく、かつ電線管などに人が 触れる恐れがない場所	200	2. 15	$R = 0.9\sqrt{\frac{200 - \theta}{30}}$
絶縁電線	上記以外の場所	200	1. 27	$R = 0.9\sqrt{\frac{90 - \theta}{30}}$

注 Rは許容電流減少係数

θ は周囲温度 (℃)

4 キャブタイヤケーブルの許容電流は、絶縁物の最高許容温度が60℃のものは表4.1.9により、それ以外の絶縁物によるものは表4.1.8の許容電流補正係数を乗じた値とする。ただし、絶縁物がブチルゴム混合物又はエチレンプロピレンゴム混合物の場合の許容電流は、表4.1.10によるものとする。

表4.1.9 絶縁物の最高許容温度が60℃のキャブタイヤケーブルの許容電流

(周囲温度30℃以下)

導体公称断面積	許容電流 (A)							
(mm ²)	単心	2 心	3 心	4心及び5心				
0.75	14	12	10	9				
1. 25	19	16	14	13				
2	25	22	19	17				
3. 5	37	32	28	25				
5. 5	49	41	36	32				
8	62	51	44	39				
14	88	71	62	55				
22	115	95	83	74				
30	140	110	98	89				
38	165	130	110	100				
50	195	150	125	115				
60	225	170	150	135				
80	270	_	_	_				
100	315	_		—				

表4.1.10 絶縁物がブチルゴム混合物及びエチレンプロピレンゴム混合物の キャブタイヤケーブルの許容電流 (絶縁物の最高許容温度80 $^{\circ}$)

(周囲温度30℃以下)

導体公称断面積	許容電流(A)							
(mm ²)	単心	2心	3心	4心及び5心				
0.75	18	15	13	11				
1. 25	24	20	18	16				
2	32	28	24	22				
3. 5	47	41	36	32				
5. 5	63	53	46	41				
8	80	65	56	50				
14	113	91	80	71				
22	148	122	107	95				
30	180	142	126	115				
38	213	167	142	129				
50	251	193	161	148				
60	290	219	193	174				
80	348	_		_				
100	406							

4.1.3 配線場所における配線工事の方法

- 1 配線工事は、配線場所の状態、条件等において適合した工事方法にて行わなければならない。
- 2 配線場所の状態、条件等に対する配線工事方法は、通常の使用状態において、その回路に加わる線間電圧(以下「使用電圧」という。)が300V又600Vの場合において、表4.1.11及び表4.1.12に示す適合した方法のものでなければならない。

表4.1.11 施設場所と配線方法(300V以下)

				施設の可否						
		屋内						屋側		
		露出場所		いんぺい場所				屋外		
				点検できる		点検できない				
		乾燥た 場所	湿多所水あ所気い又気るの場はの場	乾燥た場所	湿多所水あ所気い又気るの場はの場	乾燥た場所	湿多所水あ所気い又気るの場はの場	雨線内	雨線外	
がいし引	き配線		0	0	0	0	X	X	Δ	Δ
金属管配			Ö	Ö	Ō	Ö	0	0	0	0
合成樹脂	管	合成樹脂管 (CD管を除く。)	0	0	0	0	0	0	0	0
配線		CD管								
金属製可	とう電		0	X	0	×	X	X	X	×
線管配線		二種金属製可とう電線管	0	0	0	0	0	0	0	0
金属線び		£sifa	0	×	0	×	X	×	×	X
合成樹脂			0	X	0	X	×	X	X	X
フロアダ			X	×	X	X	•	×	X	X
セルラダ 金属ダク		傑	X	×	0	×	×	×	X	×
			0	×	0	×	×	×	×	X
	ライティングダクト配線 バスダクト配線		0	À	0	×	X	×	\wedge	<u>^</u>
平形保護			×	×	0	X	×	X	×	×
1 710 11142	ビニールキャブタイヤキ ャブケーブル		0	0	0	0	×	×	\triangle	Δ
+	二種	クロロプレンキャ ブタイヤケーブル	0	0	0	0	×	×	Δ	Δ
ヤブタイヤケーブ		クロロスルホン化 ポリエチレンキャ ブタイヤケーブル	0	0	0	0	×	×	Δ	Δ
ヤケ		ゴムキャブタイヤ	0	0	0	0	×	×	×	×
ブ	三種四種	ケーブル クロロプレンキャ ブタイヤケーブル	0	0	0	0	0	0	0	0
線		クロロスルホン化 ポリエチレンキャ ブタイヤケーブル	0	0	0	0	0	0	0	0
		ゴムキャブタイヤ ケーブル	0	0	0	0	0	0	×	×
キャブタイヤケーブル以外のケーブル配線		0	0	0	0	0	0	\circ	0	

〔備考〕記号の意味は、次のとおりである。

- (1)○は、施設できる。
- (2)×は、施設できない。
- (3) △は、露出場所及び点検できるいんぺい場所に限り、施設できる。
- (4)□は、直接コンクリートに埋め込んで施設する場合を除き、専用の不燃性、自消性のある 難燃性の管又はダクトに納めた場合に限り、施設することができる。
- (5) ●は、コンクリートなどの床内に限る。
- (6) ▲は、屋外用のダクトを使用する場合に限り(点検できないいんぺい場所を除く。)施設することができる。

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3102節 低圧配線方法に関する共通事項

3102-1 施設場所と配線方法

表4.1.12 施設場所と配線方法 (300V超過)

							西設の可否			
		屋内						屋	側	
		露出場所		いんぺい場所				屋屋	外	
				点検		点検できない) 生	71	
		乾燥た場所	湿多所水あ所気い又気るの場はの場	乾燥た場所	湿多所水あ所 気い又気る 所はの場	乾し場所	湿多所水あ所気い又気るの場はの場	雨線内	雨線外	
がいし引き配線			0	0	0	×	×	\triangle	\triangle	
金属管配	2線		0	0	0	0	0	0	0	\circ
合成樹脂	f管配線	合成樹脂管 (CD管を除く)	0	0	0	0	0	0	0	0
		CD管								
	可とう電			×		×	×	×	X	×
線管配線		二種金属製可とう電線管	0	0	0	0	0	0	0	0
	金属ダクト配線		0	X	0	X	×	X	X	X
バスダク	バスダクト配線		0	×	0	X	×	×		lack
	ビニーバブル	レキャブタイヤケー	×	×	×	×	×	×	×	×
キャ		クロロプレンキャ ブタイヤケーブル	×	×	×	×	×	×	×	×
キャブタイヤケーブ	 二種 	クロロスルホン化 ポリエチレンキャ ブタイヤケーブル	×	×	×	×	×	×	×	×
ヤケ		ゴムキャブタイヤケーブル	×	×	×	×	×	×	×	×
ル 配 線	三種四種	クロロプレンキャ ブタイヤケーブル	0	0	0	0	0	0	0	0
		クロロスルホン化 ポリエチレンキャ ブタイヤケーブル	0	0	0	0	0	0	0	0
		ゴムキャブタイヤ ケーブル	0	0	0	0	0	0	×	×
キャブタイヤケーブル以外のケーブ ル配線		0	0	0	0	0	0	0	0	

〔備考〕記号の意味は、次のとおりである。

- (1)○は、施設できる。
- (2)×は、施設できない。
- (3)△は、露出場所に限り、施設することができる。
- (4)□は、直接コンクリートに埋め込んで施設する場合を除き、専用の不燃性、自消性のある 難燃性の管又はダクトに納めた場合に限り、施設することができる。
- (5) ●は、電動機に接続する短小な部分で、可とう性を必要とする部分の配線に限り、施設することができる。
- (6) ▲は、屋外用のダクトを使用する場合に限り(点検できないいんぺい場所を除く。)施設

することができる。

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3102節 低圧配線方法に関する共通事項

3102-1 施設場所と配線方法

4.1.4 低圧開閉器の設置

- 1 低圧の電気を通ずる回路(以下「低圧電路」という。)中の次に掲げる箇所には、低圧開閉器 を設置しなければならない。
 - (1) 負荷電流を通じたり、止めたりする必要のある箇所
 - (2) 引込口及び故障、点検、測定、修理等の場合に低圧電路を開路する必要のある箇所
 - (3) 低圧電路に設置したヒューズに近接した電源側の箇所。ただし、分岐回路用過電流遮断器以降に設置するヒューズがプラグヒューズのように、ヒューズの取替えに際して充電部に触れるおそれのないものである場合には、低圧開閉器を省略することができる。
- 2 低圧電路中に設置する開閉器は、その箇所の各極に設けなければならない。ただし、分岐開閉器において次の各号のいずれかに該当する場合には、この限りではない。
 - (1) 変圧器の中性極に接続される電線(以下「中性線」という。)又は低圧電路において接地された中性線及び接地された一線(以下「接地側電線」という。)に接続する分岐回路であって、分岐回路用配電盤の内部において当該屋内配線の引込口側の各極に開閉器が設置されている場合
 - (2) 引込口において接地工事がなされている低圧電路又は変圧器の中性極若しくは中性線に接地工事がなされた低圧電路に接続する屋内配線の中性線
 - (3) 接地側電線に接続する分岐回路の電線であって、開閉器の設置箇所において、中性線又は接地側電線に電気的に完全に接続し、かつ、中性線又は接地側電線から容易に取り外すことができる箇所
 - (4) 使用電圧が300V以下の低圧 2 線式電路の開閉器であって、幹線に設置するもの及び分岐開閉器に設置するもの
- 3 カットアウトスイッチは、次の各号により設置しなければならない。
 - (1) カットアウトスイッチは、常時電路を開閉する必要のある箇所には設置してはならない。また、開路した状態で充電部が露出する構造のものは、常時開いたまま放置されるような箇所には設置してはならない。
 - (2) カットアウトスイッチの取りつけ方は、横向き、逆さ又は下向きにしてはならない。ただし、 工事上やむを得ず横向きにて取り付ける場合にあっては、ふたを開いた状態において自然に閉 じないような構造にすること。
- 4 ナイフスイッチは、次の各号により設置しなければならない。
 - (1) ナイフスイッチは、切替用のものを除いては、刃が負荷側になるように接続し、かつ、縦向

きに取り付ける場合は、刃受部を上側とし、開路状態のものが自然に閉路状態に陥らないよう にしなければならない。

- (2) ナイフスイッチは、刃、刃受部及び端子部分が直に露出した裸の状態では設置してはならない。ただし、電気室等において、開閉操作の際に人が充電部に触れるおそれのないようにカバー等を施した場合はこの限りではない。
- (3) ナイフスイッチは、振動の多い場所では下向きに取り付けてはならない。
- (4) 単相3線式又は3相4線式電路に設置する開閉器において中性線にも開閉機構があるものは、中性線が他の電線より早く切れたり、遅く入れられたりしないような構造のものでなければならない。

4.1.5 過電流遮断器の設置

- 1 過電流遮断器は、電路の電線及び接続した電気器具を電気的に保護するために、電路の必要箇 所に設置しなければならない。
- 2 低圧屋内幹線の電源側電路には、低圧屋内幹線を電気的に保護する過電流遮断器を設置しなければならない。ただし、次のいずれかに該当する場合は、この限りではない。
 - (1) 低圧屋内幹線の許容電流が当該低圧屋内幹線の電源側に接続する他の低圧屋内幹線を保護する過電流遮断器の定格電流の55%以上である場合
 - (2) 過電流遮断器に直接接続する低圧屋内幹線又は前号に掲げる低圧屋内幹線に接続する8m以下の低圧屋内幹線であって、当該低圧屋内幹線の許容電流が当該低圧屋内幹線の電源側に接続する他の低圧屋内幹線を保護する過電流遮断器の定格電流の35%以上である場合
 - (3) 過電流遮断器に接続する低圧屋内幹線又は(1)、(2)号に掲げる低圧屋内幹線に接続する3m 以下の低圧屋内幹線であって、当該低圧屋内幹線の負荷側に他の低圧屋内幹線が接続されない 場合
- 3 低圧屋内幹線から分岐する分岐回路は、分岐点から3m以下の箇所には開閉器及び過電流遮断器 を設置しなければならない。ただし、分岐点から開閉器及び過電流遮断器までの電線の許容電流 がその電線に接続する低圧屋内幹線を保護する過電流遮断器の定格電流の55%(分岐点から開閉 器及び過電流遮断器迄の電線の長さが8m以下の場合では、35%)以上である場合は、分岐点から3m を越える箇所に設置できる。
- 4 過電流遮断器は、多線式電路の中性線を除く各極に設けなければならない。ただし、対地電圧が150V以下の低圧屋内電路の接地側電線以外の電線に設置した過電流遮断器が動作した場合において、各極が同時に遮断されるときには、当該電路の接地側電線に過電流遮断器を設置することを要しない。

4.1.6 過電流遮断器の遮断容量

低圧電路に設置する過電流遮断器又はヒューズと配線用遮断器を組み合わせて過電流遮断器として使用するものは、これらが設置された電路での短絡電流を遮断できる容量のものでなければなら

ない。ただし、最大短絡電流が10,000Aを超える低圧電路に10,000A以上の短絡電流を遮断できる容量の配線用遮断器が設置される場合にあって、その箇所の電源側に配線用遮断器の容量以上でかつ最大短絡電流以下の短絡電流に対する遮断時間が短時間又同時の能力を有する過電流遮断器が設置されるときは、この限りではない。

4.1.7 過電流遮断器の定格

- 1 低圧屋内幹線に設置する過電流遮断器の定格値は、低圧屋内幹線の許容電流以下の値でなければならない。ただし、低圧屋内幹線に電動機又はこれに類する始動電流が大きい電気機械器具(以下「電動機等」という。)が接続される場合は、その電動機等の定格電流の合計の3倍に、他の電気使用機械器具の定格電流の合計に加えた値(その値が低圧屋内幹線の許容電流を2.5倍を超える場合は、許容電流の2.5倍の値)以下の定格電流の値(低圧屋内幹線の許容電流値が100Aを超える場合で、その値が過電流遮断器の定格に該当しないときは、直近上位の定格電流の値)とすることができる。
- 2 低圧屋内分岐回路に設置する過電流遮断器の定格電流値は、次の各号によるものとする。
 - (1) 電動機等のみが接続された低圧屋内電路に設置する過電流遮断器の定格電流値は、負荷側の電線の許容電流の2.5倍以下の値としなければならない。ただし、低圧屋内電路の負荷側の電線の許容電流が100Aを超える場合にあって、その値が過電流遮断器の標準の定格値に該当しないときは、直近上位の定格電流値とすることができる。
 - (2) 定格電流が50Aを超える電動機等以外の1つの電気使用機械器具が接続された低圧屋内電路 に設置する過電流遮断器の定格値は、電気使用機械器具の定格電流値(その値が過電流遮断器 の標準の定格電流値に該当しないときは、その直近上位の定格電流の値とする)を超えてはな らない。
 - (3) 前号(1)、(2)に規定する低圧屋内電路以外の低圧屋内電路に設置する過電流遮断器の定格電流値は、50A以下としなければならない。この場合における過電流遮断器の定格電流値と電線の太さとの関係は、表4.1.13に示すとおりとする。

表4.1.13分岐回路の電線太さ

分岐回路の 種 類	分岐回路	一般	分岐点から一つの受口 (コンセントを除く。) に至る部分(長さが3m以 下の場合に限る。)
	銅線	ライティンク゛タ゛クト	銅線
15A	直径1.6mm (断面積1.0mm ²)	15Aのもの	
20A配線用遮断器	直径1.6mm (断面積1.0mm ²)	15A又は20Aのもの	
20A(ヒューズに限る。)	直径2.0mm (断面積1.5mm²)	20Aのもの	直径1.6mm (断面積1.0mm²)

30A	直径2.6mm (断面積2.5mm²)	30Aのもの	直径1.6mm (断面積1.0mm²)
40A	直径8mm (断面積6mm²)		直径2.0mm (断面積1.5mm)
50A	直径14mm (断面積10mm ²)		直径2.0mm (断面積1.5mm²)
50Aを超えるもの	当該過電流遮断器の 定格電流以上の許容 電流を有するもの		

[備考1] 分岐点から一つの受口に至る部分欄の一については、分岐回路一般欄で規定している電線太さ以上のものを使用すれば長さ3m以下に限らなくともよいことを示す。

〔備考2〕銅線の()は、MIケーブルの場合を示す。

[備考3]電光サイン装置のように、一定した負荷の場合において最大使用電流が5A以下のものは、 全回路にわたり銅電線1.6mmを使用することができる。

[備考4] ライティングダクトは、ダクト本体に表示された定格電流をいう。

〔備考5〕この表は、単相3線式分岐回路についても適用する。

内線規程 JEAC 8001-2000

3編6章 電灯及び家庭用電気機械器具の配線設計

3605節 配線設計

3605-5 分岐回路の電線太さ

(4) 電動機回路における200V又は400V三相誘導電動機(特殊用途の電動機を除く)1台の場合の 分岐回路の器具容量を表4.1.14から4.1.15により施設する。

			1	. 1. 1. 11 200	一口的子电影	及1口 57-36 口		日の水川。四四百分の湯	口 / (四四水	/K)		
				配線の種類に。	よる電線の太さ			移動電線として使	過電流	遮断器	電動機用	
	全負荷電流			電線管、線で	プに3本以下の			用する場合のコー	(配線用遊	医断器)(A)	超過目盛	
定格出力		がいし引	引き配線	電線を収め	うる場合及び	CVケー	·ブル配線			始動器使		接地線の
(kW)	規約電流			VVケーブル	配線など			ド又はキャブタイ	353 → 11 5 1	用(スタ	電流計の	最小太さ
	(A)	tr						ヤケーブルの最小	じか人始動	ーデルタ	定格電流	
		最小電線	最大こう長	最小電線	最大こう長	最小電線	最大こう長	太さ		始動)	(A)	
		mm	m	mm	m	mm ²	m	mm ²		7D 3937		mm
0.2	1.8	1.6	144	1.6	144	2	144	0.75	15	_	5	1.6
0.4	3. 2	1.6	81	1.6	81	2	81	0.75	15	_	5	1.6
0.75	4.8	1.6	54	1.6	54	2	54	0.75	15	_	5	1.6
1.5	8	1.6	32	1.6	32	2	32	1. 25	30	_	10	1.6
2. 2	11. 1	1.6	23	1.6	23	2	23	2	30	_	10, 15	1.6
3. 7	17. 4	1.6	15	2.0	23	2	15	3. 5	50	-	15 , 20	2.0
5. 5	26 34	2. 0	16 20	5. 5mm ²	27	3. 5	17 20	5. 5	75 100	40 50	30 30	5. 5mm ²
7.5	48	5. 5mm ²	20 22	14	31 37	5. 5 14	20 37	8 14	100 125	75	60	5.5
15	65	14	28	22	43	14	28	22	125	100	60	8
18. 5	79	14	23	38	61	22	36	30	125	125	100	8
22	93	22	30	38	51	22	30	38	150	125	100	8
30	124	38	39	60	62	38	39	60	200	175	150	14
37	152	60	51	100	86	60	51	80	250	225	200	22

表4.1.14 200V三相誘導電動機1台の場合の分岐回路(配線用遮断器の場合) (銅線)

「備考1]最大こう長は、末端までの電圧降下を2%とした。

[備考2]「電線管、線ぴに3本以下の電線を収める場合及びWケーブル配線など」とは、金属管(線ぴ)配線及び合成樹脂管(線ぴ)配線において同一管内に3本以下の電線を収める場合・金属ダクト、フロアダクト又はセルラダクト配線の場合及びWケーブル配線において心線数が3本以下のものを1条施設する場合(Wケーブルを屈曲がはなはだしくなく、2m以下の電線管などに収める場合を含む。)を示した。

[備考3]電動機2台以下を同一回路とする場合は、幹線の表を適用のこと。

[備考4]この表は、一般用の配線用遮断器を使用する場合を示してあるが、電動機保護兼用配線用遮断器(モーターブレーカ)は、電動機の 定格出力に適合したものを使用すること。

「備考5]配線用遮断器の定格電流は、当該条項に規定された範囲において実用上ほぼ最大の値を示す。

「備考6]配線用遮断器を配・分電盤、制御盤などの内部に施設した場合には、当該盤内の温度上昇に注意すること。

[備考7] C V ケーブル配線は600V架橋ポリエチレン絶縁ビニル外装ケーブルの許容電流(3心)の許容電流を基底温度30℃として換算した値を示した。

内線規程 JEAC 8001-2000 3編7章 低圧の電動機、加熱装置及び電力装置の配線設計 3705節 配線設計 3705-10 電動機回路の簡便設計

表4.1.15 400V三相誘導電動機1台の場合の分岐回路(配線用遮断器の場合) (銅線)

					よる電線の太さ			移動電線として		遮断器	電動機用	
	全負荷電流				『に3本以下の電			使用する場合の	(配線用過	医断器)(A)	超過目盛	
定格出力	参考値	がいし引	月き配線		易合及びVVケー	CVケー	ブル配線	コード又はキャ		始動器使	電流計の	接地線の
(kW)	(A)			ブル配線など				ブタイヤケーブ	じか入始動	用(スター	定格雷流	最小太さ
		最小電線	最大こう長	最小電線	最大こう長	最小電線	最大こう長	ルの最小太さ	011 / 11293	デルタ始 動)	(A)	
		mm	m	mm	m	mm ²	m	mm ²		到//		mm
0. 2	0. 9	1.6	580	1.6	580	2	577	0.75	15	_	5	1.6
0.4	1.6	1.6	326	1.6	326	2	325	0.75	15	_	5	1.6
0.75	2.4	1.6	217	1.6	217	2	216	0.75	15	_	5	1.6
1. 5	4.0	1.6	130	1.6	130	2	130	0.75	15	_	5	1.6
2. 2	5. 5	1.6	94	1.6	94	2	94	0.75	15	_	5	1.6
3. 7	8. 7	1.6	60	1.6	60	2	60	1. 25	30	_	10	1.6
5. 5	13	1.6	40	1.6	40	2	40	2. 0	40	20	15	2.0
7. 5	17	1.6	30	1.6	48	2	30	3. 5	50	30	15, 20	2.0
11 15	24 32	2.0 5.5mm ²	34 43	2.0 5.5mm ²	57 65	3. 5 5. 5	38 43	5. 5 8	75 100	40 50	30 60	5. 5mm ² 5. 5
18. 5	32 39	5. 5	35	3. 3IIIII 8	93	0. 0 0	53	14	100	60	60	5. 5
22	46	5. 5 8	45	14	124	8	45	14	125	75	100	8
30	62	14	58	22	92	14	58	22	125	100	100	8
37	76	14	48	38	126	14	48	30	125	125	100	8
45	95	22	60	38	101	$\frac{11}{22}$	60	38	150	150	100	8
55	115	38	83	60	134	38	83	60	200	175	150	14
75	155	60	100	100	169	60	100	80	250	225	200	22

「備考1]最大こう長は、末端までの電圧降下を2%とした。

[備考2]「電線管、線びに3本以下の電線を収める場合及びWケーブル配線など」とは、金属管(線び)配線及び合成樹脂管(線び)配線において同一管内に3本以下の電線を収める場合・金属ダクト、フロアダクト又はセルラダクト配線の場合及びWケーブル配線において心線数が3本以下のものを1条施設する場合(Wケーブルを屈曲がはなはだしくなく、2m以下の電線管などに収める場合を含む。)を示した。

[備考3]電動機2台以下を同一回路とする場合は、幹線の表を適用のこと。

[備考4]この表は、一般用の配線用遮断器を使用する場合を示してあるが、電動機保護兼用配線用遮断器(モーターブレーカ)は、電動機の定格出力に適合 したものを使用すること。

[備考5]配線用遮断器の定格電流は、当該条項に規定された範囲において実用上ほぼ最大の値を示す。

[備考6]配線用遮断器を配・分電盤、制御盤などの内部に施設する場合には、当該盤内の温度上昇に注意すること。

[備考7] C V ケーブル配線は600V架橋ポリエチレン絶縁ビニル外装ケーブルの許容電流(3心)の許容電流を基底温度30℃として換算した値を示した。

(5) 電動機回路における200V又は400V三相誘導電動機(特殊用途の電動機を除く)幹線の太さと器具容量を表4.1.16から表4.1.17により施設する。 表4.1.16 200V三相誘導電動機の幹線の太さ及び器具の容量(配線用遮断器の場合)(銅線)(参考)

		配線の種類による電線の太さ②					1-237/00:2	が成り、年間の人と人の合義の仕事(自然の一般的合う)(劉朝の一般的)(多句)													
925-ET-198			酉 己卷			(2)							じか入好	動の電動	が機中最大	大のもの					
電動機 kW数の総	最大使用 電流	がしい	引き配線	下の電線	線ぴに3本以 を収める場	CVケー	ブル配線	0.75 以下	1.5	2. 2	3. 7	5.5	7. 5	11	15	18. 5	22	30	37	45	55
和	Ū,	7,34.0	TI C HL/M		/ケーブル配								デルタ始	動器使用	目の電動	幾中最大	のもの				
① (kW)	(A)			線など				_	_	_	_	5. 5	7. 5	11	15	18.5	22	30	37	45	55
以下	以下	最小電線	最大こう長	最小電線	最大こう 長	最小電線	最大こう 長		ì	過電流遮	断器(配	線用遮断	所器)容量	量 (A)		へん始動 'ーデルタ		上欄の数 下欄の数			
3	15	1.6mm	16m	1.6mm	16m	$2 \mathrm{mm}^2$	16m	20 —	30	30 —	_	_	_	_	_	-	_	_	_	_	-
4. 5	20	1.6	13	2.0	20	2	13	30	30	40 -	50 —	_	-	_	-	_	_	-	_	_	_
6. 3	30	2.0	13	5.5mm ²	23	5. 5	24	40 —	40 —	40 -	50 —	75 40	-	-	-	-	_	_	1	-	-
8. 2	40	5. 5mm ²	17	8	26	8	26	50 —	50 —	50 —	60 —	75 50	100 50	_	-	_	_	_	_	_	_
12	50	8	21	14	35	14	36	75 —	75 —	75 —	75 —	75 75	100 75	125 75	-	-	_	_	-	-	-
15. 7	75	14	24	22	39	14	24	100	100	100 —	100	100 100	100 100	125 100	125 100	_	_	-	-	_	_
19. 5	90	22	31	38	53	22	31	125 —	125 —	125 —	125 —	125 125	125 125	125 125	125 125	125 125	_	_	1	-	-
23. 2	100	22	28	38	47	22	28	125 —	125 —	125 —	125 —	125 125	125 125	125 125	125 125	125 125	150 125	_	_	_	_
30	125	38	38	60	62	38	38	175 —	175 —	175 —	175 —	175 175	175 175	175 175	175 175	175 175	175 175	_	-	-	-
37. 5	150	38	31	60	50	60	52	200 —	200 —	200 —	200 —	200 200	200 200	200 200	200 200	200 200	200 200	200 200	ı	_	_
45	175	60	44	100	75	60	44	225 —	225 —	225 —	225 —	225 225	225 225	225 225	225 225	225 225	225 225	225 225	250 225		_
52. 5	200	60	38	100	64	100	65	250 —	250 —	250 —	250 —	250 250	250 250	250 250	250 250	250 250	250 250	250 250	250 250	300 300	_
63. 7	250	100	52	150	78	100	52	350 —	350 —	350 —	350 —	350 350	350 350	350 350	350 350	350 350	350 350	350 350	350 350	350 350	400 350
75	300	150	66	200	82	150	66	400 —	400 —	400 —	400 —	400 400	400 400	400 400	400 400	400 400	400 400	400 400	400 400	400 400	400 400
86. 2	350	150	56	250	92	200	74	500 —	500 —	500 —	500 —	500 500	500 500	500 500	500 500	500 500	500 500	500 500	500 500	500 500	500 500

[備考1]最大こう長は、末端までの電圧降下を2%とした。

[備考2]「電線管、線ぴに3本以下の電線を収める場合及びWケーブル配線など」とは、金属管 (線ぴ) 配線及び合成樹脂管 (線ぴ) 配線において同一管内 に3本以下の電線を収める場合・金属ダクト、フロアダクト又はセルラダクト配線の場合及びWケーブル配線において心線数が3本以下のものを1 条施設する場合 (Wケーブルを屈曲がはなはだしくなく、2m以下の電線管などに収める場合を含む。)を示した。

[備考3]「電動機中最大のもの」には、同時に始動する場合を含む。

[備考4]配線用遮断器の容量は、当該条項に規定された範囲において、実用上ほぼ最大の値を示す。

[備考5]配線用遮断器の選定は、最大容量の定格電流の3倍に他の電動機の定格電流の合計を加えた値以下を示す。

[備考6]配線用遮断器を配・分電盤、制御盤などの内部に施設する場合には、当該盤内の温度上昇に注意すること。

[備考7] C V ケーブル配線は600V架橋ポリエチレン絶縁ビニル外装ケーブルの許容電流(3心)の許容電流を基底温度30℃として換算した値を示した。 内線規程 JEAC 8001-2000、 3編7章 低圧の電動機、加熱装置及び電力装置の配線設計、

3705節 配線設計、 3705-10 電動機回路の簡便設計

表4.1.17 400V三相誘導電動機の幹線の太さ及び器具の容量(配線用遮断器の場合)(銅線)(参考)

		配線の種類による電線の太さ②											じか入始	動の電	動機中最高	大のもの	1				
電動機 kW数の総	最大使用			電線管、	線ぴに3本以			0.75 以下	1.5	2. 2	3. 7	5. 5	7. 5	11	15	18. 5	22	30	37	45	55
1 和	電流①'	がいし引	き配線		収める場合	CVケー	ブル配線					スター	デルタ始	動器使用	用の電動	機中最大	のもの				
(kW)	(A)			及び VVケーブ	ル配線など			_	-	1	_	5. 5	7. 5	11	15	18. 5	22	30	37	45	55
以下	以下	最小電線	最大こう 長	最小電線	最大こう 長	最小電線	最大こう 長			過電流遊	断器(西	記線用遮	断器)容	全量(A)	じカス	・入始動 ターデル	·· 夕始動·	・上欄の∛ ・・下欄の	数字 数字		
3	7. 5	1.6mm	69m	1.6mm	69m	$2 \mathrm{mm}^2$	69m	15 —	15 —	15 —	_	_	_	_	_		-	-	_	1	_
4. 5	10	1. 6	52	1.6	52	2	52	15 —	15 —	20 —	30	_	-	-	_	_	_	_	_	_	_
6. 3	15	1. 6	34	1.6	34	2	34	20 —	20 —	20 —	30 —	40 20	_	_	_	_	_	_	_	-	_
8. 2	20	1. 6	26	5.5mm ²	68	2	26	30	30	30	30	40 30	50 30	-	_	_	_	_	_	_	_
12	25	2. 0	32	5. 5	55	3. 5	36	40 —	40 —	40 —	40 —	40 40	50 40	75 40	_	_	_	_	_	-	_
15. 7	37. 5	5.5mm ²	36	14	97	5. 5	36	50 —	50 —	50 —	50 —	50 50	50 50	75 50	100 50	_	_	_	_	_	_
19. 5	45	8	46	14	81	8	46	60 —	60 —	60 —	60 —	60 60	60 60	75 60	100 60	125 60	_	_	_	_	_
23. 2	50	14	73	22	114	14	73	75 —	75 —	75 —	75 —	75 75	75 75	75 75	100 75	125 75	150 75	_	_	_	_
30	62. 5	14	58	22	91	14	58	100 —	100 —	100 —	100 —	100 100	100 100	100 100	100 100	125 100	125 100	_	_	-	_
37. 5	75	14	48	38	128	14	48	100 —	100	100	100 —	100 100	100 100	100 100	100 100	125 100	125 100	125 100	_	_	_
45	87. 5	22	65	38	110	22	65	125 —	125 —	125 —	125 —	125 125	125 125	125 125	125 125	125 125	125 125	125 125	125 125	_	_
52. 5	100	22	57	38	96	22	57	125 —	125 —	125 —	125 —	125 125	125 125	125 125	125 125	125 125	125 125	125 125	125 125	150 150	_
63. 7	125	38	77	60	124	38	79	175 —	175 —	175 —	175 —	175 175	175 175	175 175	175 175	175 175	175 175	175 175	175 175	175 175	200 175
75	150	60	103	100	174	60	103	200	200	200	200	200 200	200 200	200 200	200 200	200 200	200 200	200 200	200 200	200 200	200 200
86. 2	175	60	88	100	149	60	88	225 —	225 —	225 —	225 —	225 225	225 225	225 225	225 225	225 225	225 225	225 225	225 225	225 225	225 225

L備考1J最大こう長は、末端までの電圧降下を2%とした。

[備考2]「電線管、線ぴに3本以下の電線を収める場合及びWケーブル配線など」とは、金属管(線び)配線及び合成樹脂管(線び)配線において同一管 内に3本以下の電線を収める場合・金属ダクト、フロアダクト又はセルラダクト配線の場合及びWケーブル配線において心線数が3本以下のものを1条施設する場合 (VVケーブルを屈曲がはなはだしくなく、2m以下の電線管などに収める場合を含む。)を示した。 [備考3]電動機2台以下を同一回路とする場合は、幹線の表を適用のこと。

[備考4]この表は、一般用の配線用遮断器を使用する場合を示してあるが、電動機保護兼用配線用遮断器(モーターブレーカ)は、電動機の定格出力に 適合したものを使用すること

[備考5]配線用遮断器の定格電流は、当該条項に規定された範囲において実用上ほぼ最大の値を示す。 [備考6]配線用遮断器を配・分電盤、制御盤などの内部に施設する場合には、当該盤内の温度上昇に注意すること。 [備考7] C V ケーブル配線は600V架橋ポリエチレン絶縁ビニル外装ケーブルの許容電流(3心)の許容電流を基底温度30℃として換算した値 を示した。

4.1.8 電動機の過負荷保護装置の設置

- 1 電動機回路には、過負荷保護装置を設置しなければならない。ただし、次の各号に該当する場合は、この限りではない。
 - (1) 電動機自体に有効な過負荷焼損防止装置がある場合
 - (2) 電動機巻線のインピーダンスが高く、始動不能時にも電動機を焼損するおそれのない場合
 - (3) 一般工作機械用電動機又はホイスト等のように、常時取扱者がいて運転する場合
 - (4) 負荷の特性上電動機が過負荷となるおそれのない場合
 - (5) 単相の電動機で15A分岐回路又は配線用遮断器による20A分岐回路に接続された場合
 - (6) 電動機の出力が0.2kW以下の場合
- 2 電動機の過負荷保護装置は、電動機の焼損防止用の電動機用ヒューズ、熱動継電器(サーマル リレー)、電動機保護用遮断器、誘導形継電器とし、過負荷警報が付加されたものでなければな らない。

4.1.9 電動機の幹線及び分岐回路の電線の太さ

1 電動機用幹線の電線は、電圧降下の値を満足させ、かつ、次の各号による電流の値より大きな 許容電流値となるような太さのものとしなければならない。

ただし、この場合における電動機の定格電流値は、3相3線式電路において、定格出力1kW当たり4Aとして扱うものとする。

- (1) 幹線に接続する電動機の定格電流の合計が50A以下の場合は、その定格電流の合計の1.25倍
- (2) 幹線に接続する電動機の定格電流の合計が50Aを超える場合は、その定格電流の合計の1.1 倍
- 2 電動機用分岐回路の電線は、過電流遮断器の定格電流の1/2.5以上の許容電流値を確保し、かつ、次の各号のいずれかの規定に適合するものでなければならない。
 - (1) 連続運転する電動機に使用する電線の太さは、次によらなければならない。
 - イ 単独の電動機でその定格電流が50A以下の場合は、その定格電流の1.25倍以上の許容電流の あるもの
 - ロ 単独の電動機でその定格電流が50Aを超える場合は、その定格電流の1.1倍以上の許容電流 のあるもの
 - ハ 2台以上の電動機を同一回路に接続する場合は、電動機用幹線に使用する電線の太さに準ず る許容電流のもの
 - (2) 運転形態が、短時間運転、断続運転、周期的運転又は変動負荷運転等のような電動機に使用 する電線の太さは、電動機の定格電流の値に準拠するのではなく、負荷電流による電線の温 度上昇が許容値以下となるような熱的に等価な電流値により決定するものとする。
- 3 電動機と電灯、加熱装置、その他電力装置等が併用した幹線の電線の太さは、電圧降下及び許容電流の値を考慮し、かつ、次の各号の規定に適合するものでなければならない。

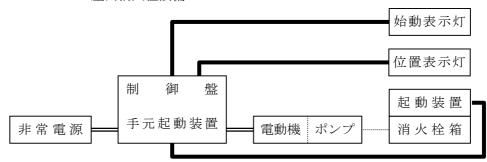
- (1) 電線の太さは、低圧屋内幹線の各部分ごとに、その部分を通して各電気使用機械器具に供給される定格電流値の合計以上の許容電流値のものでなければならない。ただし、その幹線に接続した各種負荷のうち、電動機等の定格電流値の合計が他の電気使用機械器具の定格電流値の合計より大きい場合は、他の電気使用機械器具の定格電流値の合計に次の値を加えた値以上の許容電流値を有する電線の太さとしなければならない。また、その幹線における需要率、力率等が明らかな場合は、これらの数値によって適正に修正した負荷電流値以上の許容電流値となる太さの電線でなければならない。
 - イ 電動機の定格電流値の合計が50A以下の場合は、その定格電流値の合計の1.25倍
 - ロ 電動機の定格電流値の合計が50Aを超える場合は、その定格電流値の合計の1.1倍

4.1.10 漏電遮断器の設置

- 1 人が容易に触れるおそれのある場所において、使用電圧が60Vを超える低圧電路に金属製外箱 の電気使用機械器具が接続した場合は、電路に地気が生じたときに自動的にその電路を遮断する 漏電遮断器を設置しなければならない。ただし、次の各号のいずれかに該当する場合はこの限り ではない。
 - (1) 電気使用機械器具が、電気室や変電室等のように電気取扱者以外の者が立ち入らない場所に 設置された場合
 - (2) 電気使用機械器具が、乾燥した場所に設置された場合
 - (3) 対地電圧150V以下の低圧電路で、電気使用機械器具が、水気のある場所以外の場所に設置された場合
 - (4) 電気使用機械器具にD種接地工事又はC種接地工事が施され、その接地抵抗値が3Ω以下の場合
 - (5) 電気用品取締法の適用を受けた二重絶縁構造の電気使用機械器具(庭園灯、電動工具等)を 設置した場合
 - (6) 電源側が300V以下の低圧電路において、定格容量が3kVA以下の絶縁変圧器を設置し、その電路に接地工事を施さない場合
 - (7) 電気使用機械器具がゴム、合成樹脂、その他絶縁物で被覆されたものである場合
 - (8) 電気使用機械器具が誘導電動機の2次側電路に接続された抵抗器である場合
 - (9) 電気浴器、電気炉、電気ボイラー及び電解そう等大地から絶縁することが技術上困難なものに接続する場合
 - (10) 電気使用機械器具の内部に、電気用品取締法の適用を受ける漏電遮断器を取付け、かつ、 電線引込部での電線が損傷しないようにした場合
- 2 変圧器によって特別高圧又は高圧電路と結合した300Vを越える低圧電路は、地気が生じたとき に自動的に電路を遮断する漏電遮断器を設置しなければならない。
- 3 前1項及び2項に規定された低圧電路であって、非常用照明装置、非常用昇降機、消防用設備、 鉄道用信号装置及びその他機能停止が公共の安全確保に支障となるような電気使用機械器具に電

気を供給する電路では、漏電遮断器に代えて電気取扱者駐在場所に警報を通報させる漏電警報器 とすることができる。

- 4 住宅屋内に設置された対地電圧が150Vを超え300V以下の低圧電路には、漏電遮断器を設置しなければならない。ただし、1次電圧及び2次電圧が300V以下で定格容量3kVA以下の絶縁変圧器を電源側に人が容易に触れるおそれがないように設置し、かつ、その電路に接地工事を施さない場合には、漏電遮断器の設置を要しない。
- 5 火薬庫内の電気工作物に電気を供給する低圧電路には、火薬庫以外の場所において、漏電遮断器又は漏電警報器を設置しなければならない。
- 6 フロアヒーティング及びロードヒーティング等の電気使用機械器具に電気を供給する低圧電路 には、漏電遮断器を設置しなければならない。
- 7 電気温床等の電気使用機械器具に電気を供給する低圧電路には、発熱線を空中又は地中に設置 するものを除き、漏電遮断器を設置しなければならない。
- 8 パイプライン等の電熱装置の設備に電気を供給する低圧電路には、漏電遮断器を設置しなければならない。
- 9 プール用水中照明灯及びその他類似した電気使用機械器具に絶縁変圧器によって電気を供給する低圧電路において、絶縁変圧器の2次側の使用電圧が30Vを超えるものの場合は、その2次側電路 に漏電遮断器を設置しなければならない。
- 10 労働安全衛生規則の定めるところにより、対地電圧150Vを超える移動又は可搬型の電動機器及び水などの導電性の液体によって湿潤している場所、その他鉄板上、鉄骨上、定盤上等の導電性の高い場所において使用する移動又は可搬型の電動機器に電気を供給する低圧電路には、高感度高速形の漏電遮断器を設置しなければならない。
- 11 浴室に設置するコンセントに電気を供給する低圧電路には、漏電遮断器を設置しなければならない。
- 12 メタルラス張り、ワイヤラス張り又は金属板張りの造営材に設置する標識灯等の電気使用機械器具に電気を供給する低圧電路には、漏電遮断器を設置しなければならない。
- 13 アーケード用照明設備及び架空電飾設備に電気を供給する低圧電路には、漏電遮断器を設置しなければならない。
- 14 深夜電力を使用する電気使用機械器具に電気を供給する低圧電路で、次の各号のいずれかに該 当する場合には、漏電遮断器を設置しなければならない。ただし、漏電遮断器を内蔵する電気使 用機械器具が設置された場合は、この限りではない。
 - (1) 貯蔵式電気温水器を浴用又は水気のある場所に設置した場合
 - (2) 深夜電力を使用する電気使用機械器具を水気のある場所に設置した場合
 - (3) 対地電圧150Vを超える低圧電路に、深夜電力を使用する電気使用機械器具を設置した場合
- 15 建設工事用の電気使用機械器具に電気を供給する低圧電路には、漏電遮断器を設置しなければならない。
- 16 次の各号に掲げる設備に電気を供給する低圧電路には、漏電遮断器を設置しなければならない。


- (1) プール、公衆浴場、噴水、池、水田等これらに類するものに使用する循環ろ過ポンプ及び給 排水ポンプ等の雷動機設備
- (2) プールサイドに設置する照明器具。ただし、照明器具が絶縁性のポールに取りつけられ、その金属部分に人が触れるおそれのない場合又は外箱が絶縁性のものである場合は、この限りでない。
- (3) 屋側又は屋外に設置したコンセント設備

4.1.11 防災設備への配線

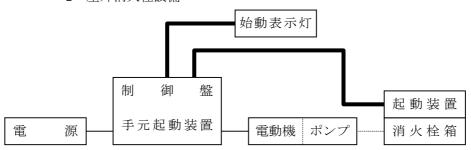
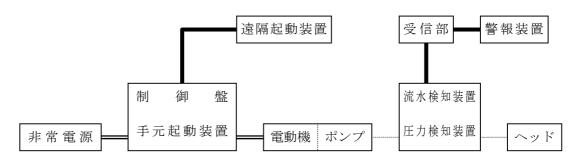
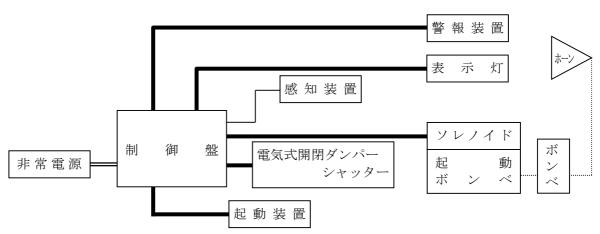
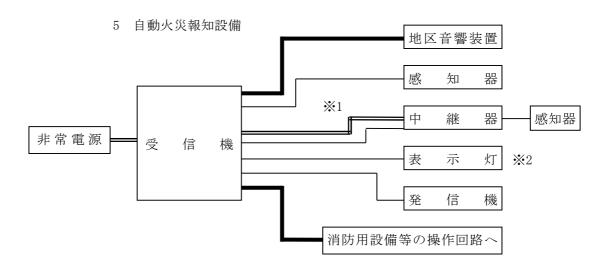

- 1 建築基準法、消防法等によって設置が定められている防災設備への配線は次の各号により行わ なければならない。
 - (1) 非常電源から防災設備への配線及び非常用照明に対する電源配線は、次によって行わなければならない。
 - イ 電線は、600V耐熱ビニル絶縁電線又はこれと同等以上の耐熱性を有する電線でなければならない。
 - ロ 電線は、耐火構造とした主要構造部に埋設又はこれと同等以上の耐熱効果のある方法によって保護して敷設しなければならない。
 - ハ 電線を金属管又は金属ダクト内に敷設する場合は、電線管用耐火ケーブルを使用しなければならない。
 - ニ MIケーブル又は消防庁長官が定める基準に適合する耐火電線を使用する場合は、露出配管内にて行うことができる。
 - ホ 開閉器、過電流保護器及びその他の電気配線用機器は、耐熱性のある箱内又は場所に、設置しなければならない。
 - (2) 防災設備の操作・表示及び放送用配線は、次によって行わなければならない。
 - イ 電線は、600V耐熱ビニル絶縁電線又はこれと同等以上の耐熱性を有する電線でなければな らない。
 - ロ 電線の敷設方法は、金属管、可とう電線管、金属ダクト及び不燃性ダクト内敷設ケーブル 工事によって行わなければならない。
 - ハ 消防庁長官が定める基準に適合する耐熱電線を使用する場合は、露出配管にて行うことが できる。
- 2 防災設備に係わる配線のうち、耐火電線、耐熱電線及び一般配線にて敷設する範囲区分は、図 4.1.1に示すとおりとする。

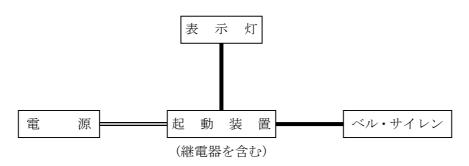
図4.1.1 防火設備用配線の保護範囲区分

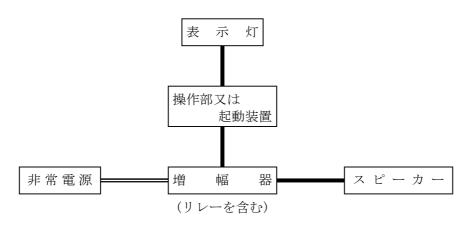

1 屋内消火栓設備


2 屋外消火栓設備



3 スプリンクラー設備・水噴霧消火設備・泡消火設備

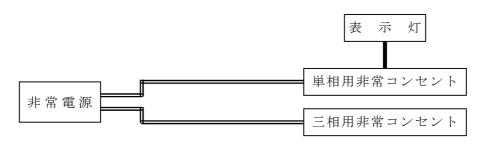

4 二酸化炭素消火設備・ハロゲン化消火設備、粉末消火設備



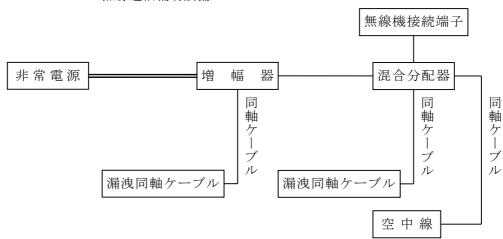
- ※1 中継器の非常電源回路
- ※2 発信機を他の消防用設備等の起動装置と兼用する場合、発信機上部表示 灯の回路は、非常電源付の耐熱配線とすること。

6 非常ベル・自動式サイレン

7 放送設備



8 誘導灯



9 排煙設備 感知装置 制御盤 手元起動装置 電動機 ファン 起動装置

10 非常コンセント設備

11 無線通信補助設備

備考

- 1 **──**は耐火配線、**──**は耐熱配線、**──** は一般配線、**──** は水管又はガス管を示す。
- 2 非常電源専用受電設備の場合は、建物引込点より規制される。
- 3 蓄電池設備を機器に内蔵する場合は、機器の電源配線を一般配線とすることができる。

4.1.12 電線などの防火区画の貫通

- 1 金属管が防火区画を貫通する場合は、次の各号のいずれかの方法による処置を行わなければならない。
 - (1) 金属管と壁などの隙間は、モルタル等の不燃材料を充填して、隙間を完全に密閉させなければならない。
 - (2) 金属管と壁などの隙間は、ロックウール繊維を充填し、厚さが1.6mm以上の鉄板によって押さえ込み処理をしなければならない。

なお、このとき鉄板の端部は折り曲げ加工とする。

- (3) 金属管と壁などの隙間は、ロックウール繊維を充填し、その上をモルタルで押さえ込みをしなければならない。
- 2 金属ダクトが防火区画を貫通する場合は、次の各号のいずれかの方法による処置を行わなければならない。
 - (1) 金属ダクトと壁などの隙間は、モルタル等の不燃材料を充填して、隙間を完全に密閉させなければならない。

なお、モルタル充填するときは、クラックを生じないように数回にわけて行わなければならない。

- (2) 防火区画を貫通する部分の金属ダクトの内部には、ロックウール保温材(密度150kg/m3以上)で充填し、厚さ25mm以上の繊維混入けい酸カルシウム板で押えなければならない。また、電線相互及び繊維混入けい酸カルシウム板と電線の隙間のうち繊維混入けい酸カルシウム板から50mmまでは、耐熱シール材を充填しなければならない。
- 3 バスダクトが防火区画を貫通する場合は、バスダクトと壁等の隙間には、ロックウール保温材 (密度150kg/m3以上)で充填し、厚さ25mm以上の繊維混入けい酸カルシウム板で押えなければ ならない。また、繊維混入けい酸カルシウム板とバスダクトの隙間のうち繊維混入けい酸カルシウム板から50mmまで及び繊維混入けい酸カルシウム板と壁との隙間には、耐熱シール材を充填し なければならない。
- 4 ケーブルラックが防火区画を貫通する場合は、次の各号のいずれかの方法による処置を行わなければならない。
 - (1) 開口部の面積は0.24㎡以下とし、ケーブルと壁等の隙間には、ロックウール繊維(密度300kg/m3以上)で充填し、厚さ25mm以上の耐火仕切板でおさえなければならない。また、ケーブル相互の隙間及び耐火仕切板とケーブルの隙間のうち耐火仕切板から50mmまで並びに耐火仕切板と壁等の隙間には、耐熱シール材を充填し、さらに、太さが60mm2を超えるケーブルには、防火区画から両側1m以上までの部分に、十分な延焼防止効果のある延焼防止剤を乾燥後の厚さが1.6mm以上になるように塗布しなければならない。
- なお、ケーブル増設に対する措置としては、防火区画の両側に長さ1m以上に突き出た状態で金属管を敷設し、その管口部は金属製のふたで閉塞するか又は耐熱シール材を詰めて処理しておかなければならない。
- (2) ケーブルラックに敷設した配線は、防火区画の両側1m以上の部分を金属管で保護し、その管

端部には耐熱シール材を詰め、金属管と壁との隙間にはモルタル等の不燃材料を充填しなければならない。

- (3) ケーブルラックが防火区画を貫通する場合の耐火処置の方法として、その耐火性能が国土交通大臣の認定を受けた方法を採用する場合は、それに明記された所定の方法にて行わなければならない。
- 5 金属ダクト、バスダクト及びケーブルラックが防火区画された配線室の床を貫通する部分で耐 火処置を必要とする箇所は、次の各号のいずれかの方法によって行わなければならない。
 - (1) 床の上面に厚さ25mm以上の耐火仕切板を取り付け、ケーブル相互の隙間及び耐火仕切板とケーブルとの隙間のうち耐火仕切板から50mmまで並びに耐火仕切板と床面との隙間には、耐熱シール材を充填しなければならない。
 - (2) 貫通箇所には、ロックウール繊維を充填し、その両面を厚さ1.6 mm以上の鉄板でおさえなければならない。また、ケーブルラックの場合には、ケーブル増設用として金属管を両側1m以上 突き出た状態で敷設し、その管端を金属製のふたで閉塞するか又は耐熱シール材を詰めておかなければならない。

なお、鉄板の端部は折り曲げるものとし、ロックウールの密度は次によるものとする。

- イ 金属ダクト及びバスダクトの場合は、200kg/m3以上とする。
- ロ ケーブルラックの場合は、300kg/m3以上とする。

4.1.13 外壁貫通の管路など

構造物の外壁を貫通する管路は、屋外の雨水等が管路を通じて屋内に侵入しないように、適切な 防水措置を施さなければならない。また、屋上で露出配管工事を行う場合は、防水層を傷つけない ように行わなければならない。

- 4.1.14 低圧屋内配線と弱電流電線、水管、ガス管などとの離隔
 - 1 低圧屋内配線が、金属管配線、合成樹脂管配線、可とう電線管配線、合成樹脂製可とう管配線、 金属線び配線、合成樹脂線び配線、フロアダクト配線、セルラダクト配線、金属ダクト配線、バ スダクト配線、ケーブルラック配線、ライティングダクト配線、平形保護層配線又はケーブル配 線の場合は、弱電流電線等、水管、ガス管もしくはこれらに類するものと接触しないように離隔 して敷設しなければならない。
 - 2 低圧屋内配線を金属管配線、合成樹脂管配線、可とう電線管配線、合成樹脂製可とう管配線、 金属線び配線、合成樹脂線び配線、バスダクト配線、フロアダクト配線、セルラダクト配線、金 属ダクト配線、ケーブルラック配線により敷設する場合は、その電線と弱電流電線とを同一の管、 線ぴ、ダクト、ラック若しくはこれらの付属品又はプルボックスの中に敷設してはならない。た だし、次の各号のいずれかに該当する場合は、この限りではない。
 - (1) 低圧屋内配線を金属管配線、合成樹脂管配線、可とう電線管配線、合成樹脂製可とう管配線、 金属線び配線により敷設する場合、電線と弱電流電線とをそれぞれ別個の管又は線びに敷設す

る場合にあって、電線と弱電流電線の収容部分が堅牢な隔壁によって分割され、かつ、金属部分にC種接地工事が施されたボックス又はプルボックスの中に電線と弱電流電線とを収めて敷設するとき。

- (2) 低圧屋内配線を金属ダクト配線又はフロアダクト配線により敷設する場合において、電線と 弱電流電線との収容部分が堅牢な隔壁によって分割された構造で、かつ、金属部分にC種接地 工事が施されたダクト又はボックスの中に電線と弱電流電線とを収めて敷設するとき。
- (3) 低圧屋内配線をバスダクト配線以外の工事によって敷設する場合において、弱電流電線が制御回路の配線であって、かつ弱電流電線をビニル電線以上の絶縁効力があり低圧屋内配線の電線との識別が容易にできる電線にしたとき。
- (4) 低圧屋内配線をバスダクト配線以外の工事によって敷設する場合において、弱電流電線にC 種接地工事が施された金属製の電気しゃへい層を有する通信ケーブルを使用するとき。
- 4.1.15 高圧屋内配線と他の高圧屋内配線、低圧屋内配線、管灯回路の配線、弱電流電線など、水管、ガス管などとの離隔

高圧屋内配線と他の高圧屋内配線、低圧屋内配線、管灯回路の配線、弱電流電線等又は水管、ガス管若しくはこれらに類するものと近接し又は交差する場合は、次の各号のいずれかの措置を講じなければならない。ただし、高圧ケーブル相互の場合は、この限りではない。

- (1) 0.15m以上離隔して高圧屋内配線を敷設する。
- (2) 高圧屋内配線のケーブルを、耐火性のある堅牢な管に収容して敷設する。
- (3) 高圧屋内配線のケーブルと接近した他の配線又は管等との間に耐火性を有する堅牢な隔壁を設ける。

4.1.16 地中電線相互及び地中電線と地中弱電流電線との離隔

- 1 低圧ケーブルが高圧ケーブルと、又は低圧若しくは高圧ケーブルが特別高圧ケーブルと、接近 又は交差する場合は、次の各号のいずれかの方法によって行わなければならない。ただし、マン ホール、ハンドホール等の内部で接触しないように敷設する場合は、この限りではない。
 - (1) ケーブル相互は、0.3m以上離隔する。
 - (2) それぞれのケーブル相互間に、堅牢な耐火性の隔壁を設ける。
 - (3) それぞれのケーブルを、自消性のある難燃性の被覆を有するものとする。
 - (4) それぞれのケーブルを、堅牢な自消性のある難燃性の管に収める。
 - (5) いずれかのケーブルを、不燃性の被覆を有するケーブルとする。
 - (6) いずれかのケーブルを、堅牢な不燃性の管に収める。
- 2 低圧、高圧又は特別高圧ケーブルが地中弱電流電線等と、接近又は交差する場合は、次の各号 のいずれかの方法によって行わなければならない。
 - (1) 低圧又は高圧ケーブルと地中弱電流電線等とは、0.3m以上離隔する。
 - (2) 特別高圧ケーブルと地中弱電流電線等とは、0.6m以上離隔する。

- (3) 低圧、高圧又は特別高圧ケーブルと地中弱電流電線等との間に、堅牢な耐火性の隔壁を設ける。
- (4) 低圧、高圧又は特別高圧ケーブルを堅牢な不燃性又は自消性のある管に収め、当該管が地中 弱電流電線等と直接接触しないように敷設する。

4.1.17 発熱部との離隔

屋内配線の電線は、外部の温度が50℃以上となる発熱部から0.15m以上離隔して敷設しなければならない。ただし、0.15m 以上に離隔して敷設することが困難な場合は、ガラス繊維等によって適切な断熱処理を行うか又は同等以上の効果のある耐熱性の電線を使用しなければならない。

4.1.18 電線の接続

電線の接続は、次の各号によって行わなければならない。

- (1) 金属管、合成樹脂管、合成樹脂可とう電線管、CD管、可とう電線管、フロアダクト、1種金属線の、合成樹脂線の等の内部では、電線を接続してはならない。また、金属ダクト、2種金属線の内部では、点検できる部分を除き電線を接続してははならない。
- (2) 電線の途中接続は、平形保護層配線の場合以外の配線においては、施工上特別の理由のないかぎり行ってはならない。
- (3) 電線及びケーブルの絶縁被覆のはぎ取りは、心線を傷つけないように慎重に行わなければならない。
- (4) 心線相互の接続は、原則として圧着スリーブ、電線コネクタ、圧着端子等電線に適合した接続金具を使用して行わなければならない。
- なお、圧着接続は、JIS C 9711「屋内配線用電線接続工具」に適合した電線接続工具を使用して 行わなければならない。ただし、平形保護層配線の場合は、専用の接続コネクタ及び工具を使 用して行うものとする。
- (5) 絶縁電線相互の接続及び絶縁電線とケーブルとの接続部分は、絶縁テープなどにより、絶縁 被覆と同等以上の効力があるように巻き付けるか、又は同等以上の効力を有する絶縁物を被せ るなどの方法によった絶縁処理を行わなければならない。
- (6) 低圧ケーブル相互の接続部分は、ケーブル専用の接続器を使用する場合を除き、ケーブルの 絶縁物及びシースと同等以上の効力を有するように適合した絶縁テープを巻き付けるか、又は 同等以上の効力を有する絶縁物を被せるなどの方法或いは合成樹脂モールド工法によって絶縁 処理を行わなければならない。ただし、プルボックス、金属ダクト等の内部での接続は、(5) 項の規定によって行わなければならない。
- (7) 耐火ケーブル相互及び耐熱ケーブル相互の接続は、消防予第123号(平成10年7月31日)「耐火電線にかかる接続構法の取り扱いについて」によって行わなければならない。
- (8) 耐熱ビニル電線、架橋ポリエチレン電線及び600V架橋ポリエチレン絶縁ビニルシースケーブルを耐熱配線に使用する場合の電線相互の接続は、使用する電線の絶縁物、シースと同等以上

- の絶縁性能及び耐熱性能を有するものでなければならない。
- (9) 耐熱性能の異なる電線相互の接続は、(7)に準じ耐熱性能の低い電線の場合の方法によって行うことができる。
- (10) 高圧架橋ポリエチレンケーブル相互の接続及び端末処理は、しゃへい銅テープを傷つけないように慎重に行い、次のいずれかの方法とする。
 - イ 絶縁テープ巻きによる方法。ただし、乾燥した場所に限定される。
 - ロ 差込絶縁筒を使用する方法。
 - ハ 合成樹脂モールド工法。
 - ニ 収縮チューブによる方法。
- (11) 配線と器具引出し線との接続は、その接続点に張力が加わらず、かつ、器具その他のものによって押圧されないように行わなければならない。

4.1.19 電線と機器端子との接続

電線と機器端子との接続は、次の各号によって行わなければならない。

- (1) 電線と機器端子との接続は、接続点に張力が加わらないように接続しなければならない。
- (2) 接続は十分締めつけ、振動等により緩むおそれのある場合は、二重ナット又はバネ座金を使用して行わなければならない。
- (3) 機器端子が押しねじ形、クランプ形又はこれに類する構造でない場合は、電線に圧着端子を 使用して行わなければならない。
- (4) 太さが14mm2以上の電線を圧着端子によって機器に接続する場合には、増締確認の表示を行 わなければならない。
- (5) 巻締構造の端子には、電線をねじのまわりに緊密に3/4周以上1周以下巻付けなければならない。

4.1.20 電線の色別

ビニル電線等のように色別が可能な配線電線は、配線方式の相又は極別に対応した色別での使用を表4.1.18 に基づき行わなければならない。

表4.1.18 ビニル電線の色別

電圧	配線方式	相	別	色別
		電圧側	R	赤
高圧	3相3線式	"	S	黒
		11	T	青
		電圧側	U	赤
低圧	3相3線式	"	V	黒
		"	W	青
,,,	単相2線式	電圧側	A, B	黒又は赤
<i>"</i>	平1月278年1八	接地側	N	白
		電圧側	A	赤
11	単相3線式	接地側	N	白
		電圧側	В	黒

		電圧側 U	赤
"	3相4線式	∥ V	黒
"	3个日生形尺工人	<i>"</i> ₩	青
		接地側 N	白
,,	古法0伯士	正極	赤
"	直流2線式	負極	青

4.1.21 絶縁抵抗及び絶縁耐力

1 使用電圧が低圧の電路

施設する開閉器又は過電流遮断器(電路に過電流を生じたときに自動的に電路を遮断する装置をいう。以下同じ。)で区切ることのできる電路ごとに、表4.1.19の電路の使用電圧の区分に応じた値以上でなければならない。

表4.1.19

	電路の使用電圧の区分	絶縁抵抗値
3000以下	対地電圧(接地式電路においては電線と大地との間の電圧、非接地式電路においては電線間の電圧をいう。以下同じ。)が150V以下の場合	0.1ΜΩ
	その他の場合	$0.~2\mathrm{M}\Omega$
300Vを越える	540	$0.~4\mathrm{M}\Omega$

- 2 低圧の電線路(引下げ線を含む。)中絶縁部分の電線と大地との間の絶縁抵抗(多芯ケーブル、 引込み用ビニル絶縁電線又は多芯型電線にあっては、芯線相互間及び芯線と大地との間の絶縁抵 抗)は、使用電圧に対する漏えい電流が最大供給電流の1/2,000を超えないように保たなければな らない。
- 3 高圧及び特別高圧の電路は、表4.1.20の電路の種類に応じた、試験電圧を電路と大地との間(多 芯ケーブルにあっては、芯線相互間及び心線と大地との間)に連続して10分間加えて絶縁耐力を 試験したとき、これに耐えるものでなければならない。ただし、電線にケーブルを使用する交流 の電路であって、同表の電路の種類に応じた、試験電圧の2倍の直流電圧で電路と大地との間(多 芯ケーブルにあっては、芯線相互間及び心線と大地との間)に連続して10分間加えて絶縁耐力を 試験したときこれに耐えるものについては、この限りでない。

表4.1.20

電路の種類	試験電圧
1 最大使用電圧が7,000V以下の電路	最大使用電圧の1.5倍の電圧
2 最大使用電圧が7,000Vを超え15,000V以下の中性点接地式電路(中性線を有するものであって、その中性線に多重接地するものに限る。)	最大使用電圧の0.92倍の電圧
3 最大使用電圧が7,000Vを超え60,000V以下の電路(2 に掲げるものを除く。)	最大使用電圧の1.25倍の電圧(10,500V 未満となる場合は10,500V)
4 最大使用電圧が60,000Vを超える中性点非接地式電路(電位変成器を用いて接地するものを含む。)	最大使用電圧の1.25倍の電圧
5 最大使用電圧が60,000Vを超える中性点接地式電路 (電位変成器を用いて接地するもの並びに6及び7 に掲げるものを除く。)	最大使用電圧の1.1倍の電圧 (75,000V 未満となる場合は75,000V)

6 最大使用電圧が170,000Vを超える中性点直接接地 式電路(7に掲げるものを除く。	最大使用電圧の0.72倍の電圧
7 最大使用電圧が170,000Vを超える中性点直接接地 式電路であって、その中性点が直接接地されてい る発電所又は変電所若しくはこれに準ずる場所に 施設するもの	最大使用電圧の0.64倍の電圧

- 4 電路の使用電圧が170,000V未満の場合において、特別の理由により所轄通商産業局長の認可を 受けたときは、前項の規程によらないことができる。
- 5 回転機及び整流器は、次の表4.1.21の種類に応じた、試験電圧及び試験方式で絶縁耐力を試験 したとき、これに耐えるものでなければならない。ただし、回転変流機を除く交流の回転機であって、同表に掲げる試験電圧の1.6 倍の直流電圧で絶縁耐力を試験したときこれに耐えるものを 施設する場合又は特別の理由により所轄通商産業局長の認可を受けた場合は、この限りでない。

表4.1.21

種	類	試験電圧	試験方法
整流器		直流側の最大使用電圧の1倍の 交流電圧(500V未満となる場合 は、500V)	充電部分と外箱と の間に連続して10 分間加える。
		交流側の最大使用電圧の1.1倍 の交流電圧又は、直流側の最大 使用電圧の1.1倍の直流電圧	

第2節 がいし引配線工事

4.2.1 がいし引配線工事

- 1 がいし引配線工事は、次の各号によって行わなければならない。
 - (1) がいし引配線工事に使用する電線は、絶縁電線でなければならない。
 - (2) がいし引配線は、造営材の下面又は側面に取り付け、電線の離隔距離は次に示すとおり行わなければならない。ただし、工事上やむを得ない場合は、造営材の上面に取り付けることができる。
 - イ 電線相互の間隔は、6cm以上としなければならない。
 - ロ 電線と造営材との離隔距離は、使用電圧が300V以下の場合は2.5cm以上、300Vを超える場合は4.5cm以上としなければならない。ただし、乾燥した場所に敷設する場合は、2.5cm以上とする。
 - (3) 電線を造営材に取り付ける場合の電線支持点の間隔は、電線を造営材に沿って敷設する場合は、2m以下としなければならない。ただし、ノップ又は大形のがいしを使用し、はりから次のはりに飛ばすなどの場合は、6m以下とすることができる。
 - (4) がいし引配線は、人が容易に触れるおそれのないように敷設しなければならない。ただし、 使用電圧が300Vを超える場合は、人が触れるおそれのないように敷設しなければならない。
 - (5) 電線が造営材を貫通する場合は、その部分の電線を電線ごとにそれぞれ別個にがい管又は合

成樹脂管に収めて敷設しなければならない。

- なお、使用電圧が300V以下の場合で、乾燥した場所において工事上やむを得ないときは、厚さ 1.0 mm以上の軟質ビニル管その他耐久性のある絶縁管をがい管又は合成樹脂管の代用とすることができる。ただし、メタルラス張り、ワイヤラス張り又は金属板張りの造営材を貫通する場合は、軟質ビニル管の代用はできない。
- 2 がいし引配線工事に使用するがいしは、絶縁性、難燃性及び耐水性のあるものでなければならない。

第 3 節 金属管配線工事

4.3.1 一 般

- 1 金属管工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) 金属管内では、接続点を設けてはならない。
- 2 金属管工事に使用する金属管及びボックス並びに付属品は、次の各号に適合するものでなければならない。
 - (1) 電気用品取締法の適用を受ける金属製のもの又は黄銅若しくは銅で堅ろうに製作したもの。 ただし、絶縁ブッシングはこの限りでない。
 - (2) 管の厚さは、コンクリートに埋込むものは、1.2mm以上、その他にあっては、1 mm以上でなければならない。ただし、継手のない長さ4m以下のものを乾燥した露出場所に設置する場合は、0.5mm以上とすることができる。
 - (3) 金属管の端口及び内面は、電線の被覆を損傷しないような滑らかなものでなければならない。
 - (4) 厚鋼電線管、薄鋼電線管及びねじなし電線管の寸法は、表4.3.1 に示すとおりとする。

表4.3.1 電線管の寸法

(単位mm)

種類	太さ (管の呼び方)	外径	厚さ
厚鋼電線管	16	21. 0	2. 3
	22	26. 5	2. 3
	28	33. 3	2. 5
	36	41. 9	2. 5
	42	47. 8	2. 5
	54	59. 6	2. 8
	70	75. 2	2. 8
	82	87. 9	2. 8
	92	100. 7	3. 5
	104	113. 4	3. 5
薄鋼電線管	19	19. 1	1. 6
	25	25. 4	1. 6
	31	31. 8	1. 6
	39	38. 1	1. 6
	51	50. 8	1. 6
	63	63. 5	2. 0
	75	76. 2	2. 0

ねじなし電	E19	19. 1	1. 2
	E25	25. 4	1. 2
	E31	31. 8	1. 4
	E39	38. 1	1. 4
	E51	50. 8	1. 4
電線管	E63	63. 5	1. 6
	E75	76. 2	1. 8

内線規程 JEAC 8001-2000

3編1章 低圧配線方法 3110節 金属管配線方法

3110-4 金属管及び付属品の選定

4.3.2 管の太さの選定

- 1 同一太さの電線を金属管内に収容する場合の金属管の太さは、電線管の種類に応じて、表4.3.2 ~表4.3.4 によって、選定しなければならない。
- 2 金属管の長さが6m以下で途中の屈曲が少なく、容易に電線を引き入れ及び引き替えできる場合は、前項にかかわらず次によって行うことができる。
 - (1) 電線の太さが同一で、断面積 8mm 2以下の場合は、表4.3.5 に示された太さとすることができる。
 - (2) (1)以外の場合は、電線の被覆絶縁物を含む電線断面積の総和が金属管の内部断面積の48%以下でなければならない。この場合において、電線の断面積は表4.3.6に示されるものによる。
- 3 異なる太さの電線を同一管内に収容する場合は、電線の被覆絶縁物を含む電線断面積の総和が 金属管の内部断面積の32%以下でなければならない。この場合において、電線の断面積は表4.3.6 に示されるものによる。

表 4.3.2 厚鋼電線管の太さの選定

電線	太さ				電	線	本	数			
単線	より線	1	2	3	4	5	6	7	8	9	10
(mm)	(mm ²)			電線	管の最	小太さ	き(管	の呼び	方)		
1.6		16	16	16	16	22	22	22	28	28	28
2.0		16	16	16	22	22	22	28	28	28	28
2.6	5. 5	16	16	22	22	22	28	28	28	36	36
3. 2	8	16	22	22	28	28	36	36	36	36	36
	14	16	22	28	28	36	36	36	42	42	42
	22	16	28	28	36	36	42	54	54	54	54
	38	22	36	36	42	54	54	54	70	70	70
	60	22	42	54	54	70	70	70	82	82	82
	100	28	54	54	70	70	82	82	92	92	104
	150	36	70	70	82	92	92	104	104		
	200	36	70	82	82	92	104				
	250	42	82	82	92	102					

[備考1] 電線1本に対する数字は、接地及び直流回路の電線にも適用する。

[備考2] 本表は、実験と経験に基づき決定したものである。

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3110節 金属管配線方法

3110-5 管の太さの選定表

表4.3.3 薄鋼電線管の太さの選定

電線	太さ				電	線	本	数			
単線	より線	1	2	3	4	5	6	7	8	9	10
(mm)	(mm ²)			電線	:管の最	小太さ	さ(管は	の呼び	方)		
1.6		19	19	19	25	25	25	25	31	31	31
2.0		19	19	19	25	25	25	31	31	31	31
2.6	5. 5	19	19	25	25	25	31	31	31	39	39
3. 2	8	19	25	25	31	31	31	39	39	39	51
	14	19	25	31	31	39	39	51	51	51	51
	22	19	31	31	39	51	51	51	51	63	63
	38	25	39	51	51	51	63	63	63	75	75
	60	25	51	51	63	63	75	75	75		
	100	31	63	63	75	75					
	150	39	63	75							
	200	51	75	75							

[備考1] 電線1本に対する数字は、接地及び直流回路の電線にも適用する

「備考2〕本表は、実験と経験に基づき決定したものである。

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3110節 金属管配線方法

3110-5 管の太さの選定表

表4.3.4 ねじなし電線管の太さの選定

電線	太さ				電	線	本	数			
単線	より線	1	2	3	4	5	6	7	8	9	10
(mm)	(mm ²)			電線	泉管の最	 身小太さ	き(管の	り呼びえ	5)		
1.6		E19	E19	E19	E19	E25	E25	E25	E25	E31	E31
2.0		E19	E19	E19	E25	E25	E25	E31	E31	E31	E31
2.6	5. 5	E19	E19	E25	E25	E25	E31	E31	E31	E39	E39
3. 2	8	E19	E25	E25	E31	E31	E31	E39	E39	E39	E51
	14	E19	E25	E31	E31	E39	E39	E51	E51	E51	E51
	22	E19	E31	E31	E39	E51	E51	E51	E51	E63	E63
	38	E25	E39	E39	E51	E51	E63	E63	E63	E75	E75
	60	E25	E51	E51	E63	E63	E75	E75	E75		
	100	E31	E63	E63	E63	E75					
	150	E39	E63	E75							
	200	E51	E75	E75							

備考1] 電線1本に対する数字は、接地及び直流回路の電線にも適用する

[備考2] 本表は、実験と経験に基づき決定したものである。

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3110節 金属管配線方法

3110-5 管の太さの選定

表 4.3.5 管の屈曲が少なく、容易に電線の引き入れ及び引き替えができる場合の最大本数

電線	太さ	厚鋼電	厚鋼電線管 薄鋼電線管 ねじ		ねじなし	_電線管	
単線	より線						
(mm)	(mm ²)	16	22	19	25	E19	E25
1.6		6	11	5	11	6	12
2.0		5	9	4	9	5	9
2.6	5. 5	4	7	3	7	4	8
3. 2	8	3	5	2	5	3	5

表 4.3.6 電線(被覆絶縁物を含む。)の断面積

電線	太さ	断面積
単線(mm)	より線(mm²)	(mm ²)
1.6		8
2.0		10
2.6	5. 5	20
3. 2	8	28
	14	45
	22	66
	38	104
	60	154
	100	227
	150	346
	200	415
	250	531

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3110節 金属管配線方法

3110-5 管の太さの選定

4.3.3 いんぺい配管の敷設

いんぺい配管の敷設は、次の各号によって行わなければならない。

- (1) 金属管の埋込み又は貫通は、建造物の構造及び強度に支障が生じないように行わなければならない。
- (2) 金属管の切り口は、リーマ等を使用して平滑にし、金属ブッシング又は合成樹脂ブッシング を取り付けなければならない。
- (3) ボックス類は、造営材等に堅固に取り付けなければならない。

なお、ボックス類の取り付け場所は、点検ができる場所でなければならない。

- (4) 敷設した配管の屈曲箇所は、4箇所以下とし、曲げ角度の合計が270°を超えてはならない。
- (5) 金属管の曲げ半径は、その管の内径の6倍以上とし、曲げ角度は90°を超えてはならない。
- (6) 金属管を造営材に取り付ける場合は、サドル、ハンガ等を使用し、取付間隔は、2m以下としなければならない。ただし、管端、管相互の接続点及び管とボックスとの接続点では、接続点に近い箇所で管を固定しなければならない。
- (7) 金属管を支持する金物の取付間隔は、2m以下としなければならない。ただしプルボックスと管との接続点では、接続点に近い箇所で管を固定しなければならない。

- (8) コンクリートに埋設する金属管は、あらかじめ管を鉄筋等に鉄線で結束させ、コンクリート 打設時に容易に移動することがないように措置を講じておかなければならない。
- (9) コンクリートに埋設するボックス、分電盤の外箱等は、型枠に堅固に固定しなければならない。

なお、ボックス、分電盤の外箱に仮枠を使用した場合は、ボックス、分電盤の外箱を取り付け た後、その周囲をモルタルで充填しておかなければならない。

4.3.4 露出配管の敷設

露出配管の敷設は、4.3.3 項の第 1~7 号によるほか、次の各号によって行わなければならない。

- (1) 露出配管は、天井面、壁面などに沿って敷設しなければならない。
- (2) 金属管を支持する金物は、鋼製又は同等以上の強度を有する金属製のものとし、管数、管の配列及び支持箇所の状態に適合した形状寸法のものでなければならない。
- (3) 金属管を支持する金物は、スラブその他の構造体に堅固に取り付けなければならない。
- (4) 雨水のかかる箇所に敷設した金属管の管端部は、下向きに曲げ管内に雨水が侵入しないよう に措置を講じておかなければならない。
- (5) 露出配管の耐熱保護工事は、次のいずれかの方法によって行わなければならない。
 - イ 金属管を耐火被覆剤で覆う。
 - ロ 金属管を耐火被覆板で覆う。
 - ハ 金属管にラス金網を巻き、モルタルを20mm厚で塗布する。

4.3.5 メタルラス張り壁などの木造造営物における配管の敷設

メタルラス張り壁等の配管の敷設は、次の各号によって行わなければならない。

- (1)メタルラス張り壁等を貫通する金属管の敷設に当たっては、その箇所のメタルラスなどを十分 に切り開き、かつ、その部分を合成樹脂管によって金属部分との電気的な絶縁を図らなければ ならない。この場合、絶縁材の両端部は、壁面より15mm以上突出させなければならない。
- (2) メタルラス張り壁に沿って金属管、ボックス類を敷設する場合は、絶縁性の耐水性塗料が塗布された木板、合成樹脂板、磁器等の耐久性を有する絶縁支持材を使用するか、又はボックス周辺のメタルラス張りなどを切取るなどして、金属部分との電気的な絶縁を図らなければならない。さらに、金属管、ボックス類を敷設するのに使用する、釘、取付ねじ類がメタルラス張りに触れるおそれのある場合は、(1) に準じて措置しなければならない。

4.3.6 位置ボックス及びジョイントボックスなどの設置

位置ボックス、ジョイントボックス等の設置は、次の各号によって行わなければならない。

(1) スイッチ、コンセント、照明器具等の取付位置には、位置ボックスを設けなければならない。 なお、器具が実装されない場合には、位置ボックスの箇所にプレートを取り付け、用途別表示 を行っておかなければならない。

- (2) 金属管配線からケーブル配線に替わる箇所は、ジョイントボックスを設置しなければならない。
- (3) 金属管工事における位置ボックス、ジョイントボックスの設置区分は、表4.3.7~表4.3.8 によるものとする。

なお、取付場所の状況などによってこれらによりがたい場合は、同容積以上のボックスとして もよい。

表4.3.7 隠ぺいの位置ボックス、ジョイントボックスの使用区分

	取付位置	配管状況	ボックスの種別
		(22) 又は(E25)以下 の配管4本以下	中形四角コンクリートボックス54
天	井スラブ内	(22) 又は(E25)以下 の配管5本以下	大型四角コンクリートボックス54
		(28) 又は(E31)以下 の配管4本以下	
		連用スイッチ3個	1個用スイッチボックス又は
	スイッチ用	以下	中形四角アウトレットボックス44
天	位置ボック	連用スイッチ6個	2個用スイッチボックス又は
井	ス	以下	中形四角アウトレットボックス44
スラ		連用スイッチ9個	
ブ		以下	3個用スイッチボックス
以外((22) 又は(E25)以下 の配管2本以下	中形四角アウトレットボックス44
床	照明器具用、	(22) 又は(E25)以下	中形四角アウトレットボックス54
を	コンセント	の配管4本以下	(柱、壁にとりつける場合は44)
床を含む)	用位置ボッ	(22) 又は(E25)以下	
97,	クスなど	の配管5本以下	
		(28) 又は(E31)以下	大型四角アウトレットボックス54
		の配管4本以下	

表4.3.8 露出配管の位置ボックス、ジョイントボックスの使用区分

用 途	配管状況	ボックスの種別
照明器具用などの位置 ボックス及びジョイン	(22)又は(E25)以下の配管4 本以下	丸形露出ボックス(直径89mm)
トボックス	(28) 又は(E31) 以下の露出 配管4本以下	丸形露出ボックス(直径100mm)
	連用スイッチ又は連用コン セント3個以下	露出1個用スイッチボックス
スイッチ用及びコンセ ント用位置ボックス	連用スイッチ又は連用コン セント6個以下	露出2個用スイッチボックス
	連用スイッチ又は連用コン セント9個以下	露出3個用スイッチボックス

- (4) プルボックス又は支持金物類の設置は、スラブその他構造体に吊りボルト、ボルトなどで 堅固に取り付けるものとし、あらかじめ取付用インサート、ボルト類を埋め込んでおかなけれ ばならない。ただし、やむを得ない場合は、十分な強度を有するメカニカルアンカーボルト等 を使用して行うものとする。
- (5) プルボックスの支持点数は、4箇所以上でなければならない。ただし、長辺の長さが 250mm 以下のものは、2箇所以上とすることができる。

- (6) プルボックスを支持する吊りボルトは、呼び径9mm以上のものとし、平座金及びナットを使用し、振動などによって緩みが生じないように堅固に取り付けなければならない。
- (7) 天井又は壁に埋込むボックスは、埋込みすぎないようにし、塗りしろカバーと仕上がり面とが10mm程度離れる場合は継ぎ枠を使用して調整を図らなければならない。ただし、ボード張りで、ボード裏面と塗りしろカバーとが離れないように施工した場合はこの限りではない。
- (8) 不要の切り抜き穴のあるボックスは、使用してはならない。ただし、適当な方法で穴をふさいだものは、この限りではない。
 - なお、ボックスのノックアウトと管の外径が適合しない場合は、リングレジューサをボックス の内外面に使用しなければならない。
- (9) 幹線に用いられるプルボックスを、防災用配線(耐火ケーブル及び耐熱ケーブルを除く)と一般用配線とで共用する場合は、防災用配線と一般用配線との間は、厚さ1.6 mm以上の鋼板で隔壁を設けるか又は防災用配線に耐熱性を有する粘着マイカテープ、自己融着性シリコンゴムテープ、粘着テフロンテープなどで 1/2重ね2回巻きとしなければならない。

4.3.7 管の接続

管の接続は、次の各号によって行わなければならない。

- (1) 管相互の接続は、カップリング又はねじなしカップリングを使用し、ねじ込み、突合せ及び 締付けを十分に行わなければならない。また、管とボックス、分電盤などとの接続がねじ込み によらないものの場合は、内外面にロックナットを使用して接続部分を締付け、管端には絶縁 ブッシングを取り付ける。ただし、ねじなしコネクタを使用してロックナット及びブッシング が必要としない場合は、この限りではない。
- (2) 管を送り接続とする場合は、ねじなしカップリングを使用するか、カップリング及びロック ナット2個による接続方法としなければならない。ただし、製造工場であらかじめねじ切り加工 を行った管のねじ部分では、ロックナットを省略することができる。
- (3) 配管に接地工事を行うものは、管とボックス間にボンディングを行い電気的な接続を行わなければならない。ただし、ねじ込み接続となる箇所及びねじなし丸型露出ボックス、ねじなし露出スイッチボックスなどに接続される箇所ではボンディングを省略することができる。
- (4) 配管に接地工事を行うものは、金属管と配分電盤、プルボックス等との間にはボンディングを行い電気的に接続しなければならない。
- (5) ボンディングに用いる接続線は、表4.3.9に示す太さの軟銅線を使用しなければならない。 ただし、低圧電動機に至る配管に施すボンディングに用いる接続線は表4.3.10によるものとする。

表4.3.9 ボンド線の太さ

配線用遮断器などの定格電流 [A]	ボンド線太さ
100 以下	2.0mm 以上
225 "	5.5mm ² "

600 "	14 mm^2 $\prime\prime$
-------	----------------------------------

表4.3.10 電動機用配管のボンド線の太さ

200V級電動機	400V級電動機	ボンド線太さ
7.5 kW以下	15 kW以下	2.0 mm以上
22 kW "	45 kW "	5.5 mm ² "
37 kW "	75 kW "	14

(6) 湿気の多い場所又は水気のある場所に敷設する配管の接続部は、防湿又は防水処理を施さなければならない。

4.3.8 配管の養生、清掃

配管の養生、清掃は、次の各号によって行わなければならない。

- (1) コンクリート埋設配管は、コンクリート打設の際に、管内に水気、じんあいなどの侵入が生 じないように管端部にパイプキャップ、ブッシュキャップなどを使用して十分養生させなけれ ばならない。
- (2) 管及びボックスは、配管敷設工事が終了したら速やかに清掃しなければならない。ただし、 コンクリート埋設配管においてコンクリート打設を行った場合は、型枠取外し後、速やかに管 内の清掃及び導通試験を行わなければならない。

4.3.9 通 線

金属管配線工事をする場合は、次の各号によって行わなければならない。

- (1) 金属管内に通線する場合、潤滑材として絶縁被覆を侵すものを使用してはならない。
- (2) 通線作業は、あらかじめ管内を清掃し、天井及び壁の仕上塗りが乾燥した状態になってから 行わなければならない。また、通線に際しては、電線を損傷しないよう十分養生しながら行わ なければならない。
- (3) 垂直に敷設する管内の電線は、表4.3.11に示される間隔でボックス内で支持しなければならない。

表4.3.11 垂直管路内の電線支持間隔

電線の太さ [mm ²]	支持間隔 [m]
38 以下	30 以下
100 "	25 "
150 "	20 "
150 超過	15 "

(4) プルボックスの蓋には、電線の重量が加わらないようにし、必要に応じて、電線支持金物等 を設ける。

4.3.10 接 地

接地は、第6章「接地工事」による。

第 4 節 合成樹脂管配線工事

4.4.1 一 般

- 1 合成樹脂管工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) 合成樹脂管内では、接続点を設けてはならない。
 - (3) 合成樹脂管配線は、重量物の圧力又は著しい機械的衝撃を受ける場所には敷設してはならない。ただし、適当な防護装置を施した場合は、この限りではない。
- 2 合成樹脂管工事に使用する合成樹脂管及びボックス並びにその他の付属品は、次の各号に適合 するものでなければならない。
 - (1) 電気用品取締法の適用を受けた合成樹脂管及びボックス並びにその他の付属品でなければならない。ただし、付属品のうちコンクリート内に埋設する金属製のボックス、大型プルボックス及び粉じん防爆型フレクシブルフィッチングにあっては、この限りではない。
 - (2) 金属管の端口及び内面は、電線の被覆を損傷しないような滑らかなものでなければならない。
 - (3) 合成樹脂管の寸法は、表4.4.1 に示すとおりとする。
 - (4) 合成樹脂管の厚さは、2mm以上としなければならない。ただし、露出した場所又は点検できるいんぺい場所であって、乾燥した場所に人が触れるおそれがないように敷設する場合は、管の厚さを1mm以上とすることができる。

表4.4.1 合成樹脂管の寸法

(単位mm)

太さ (管の呼び方)	外 径	厚き
14	18	2. 0
16	22	2. 0
22	26	2. 0
28	34	3. 0
36	42	3. 5
42	48	4.0
54	60	4. 5
70	76	4. 5
82	89	5. 9

4.4.2 管の太さの選定

- 1 同一太さの電線を合成樹脂管内に収容する場合の合成樹脂管の太さは、次の各号によって選定しなければならない。
 - (1) 管内に収容する電線の本数が10本以下の場合は、表4.4.2より選定しなければならない。

(2) 管内に収容する電線の本数が10本を超える場合は、表4.4.3より選定しなければならない。 表4.4.2 硬質ビニル管の太さの選定

電線の	の太さ				電	線	本	数			
単線	より線	1	2	3	4	5	6	7	8	9	10
(mm)	(mm^2)		碩	更質ビニ	ニル管の	の最小	太さ	(管の四	呼び方)		
1.6		14	14	14	16	16	22	22	28	28	28
2.0		14	16	16	16	22	22	28	28	28	36
2.6	5. 5	14	16	16	22	22	28	28	28	36	36
3. 2	8	14	22	22	28	28	36	36	36	36	42
	14	14	22	28	28	36	36	42	42	54	54
	22	16	28	36	36	42	42	54	54	54	70
	[30]	16	36	36	42	54	54	54	70	70	70
	38	16	36	42	54	54	54	70	70	70	70
	[50]	22	42	42	54	70	70	70	70	82	82
	60	22	42	54	54	70	70	70	82	82	
	[80]	28	54	54	70	70	82	82			
	100	28	54	70	70	82	82				
	[125]	36	70	70	82	82					
	150	36	70	70	82						
	200	42	70	82							
	250	42	82								

[備考1] 電線1本に対する数字は、接地線及び直流回路の電線にも適用する。

[備考2] 本表は、実験と経験に基づき決定したものである。

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3210節 金属製可とう電線管配線

3210-4 二種金属製可とう電線管の太さの選定

表 4.4.3 最大電線本数(10本を超える電線を収める場合)

電線の	の太さ	合成樹脂管			
単線	より線				
(mm)	(mm^2)	28	36	42	54
1.6		12	19	25	40
2.6			15	20	32
2.6	5. 5		12	16	27
3. 2	8			11	19

- 2 管の屈曲が少なく、容易に電線を引き入れ及び引き替えることができる場合は、前号の規定にかかわらず、電線が同一太さで断面積8mm以下のとき表4.4.4によるものとし、その他のときは、電線の被覆絶縁物を含む断面積の総和が合成樹脂管の内部断面積の48%以下でなければならない。
- 3 異なる太さの電線を同一の合成樹脂管内に収容する場合の合成樹脂管の太さは、表4.4.5 、表4.4.6 によるものとし、電線の被覆絶縁物を含む断面積の総和が合成樹脂管の内部断面積の32%以下でなければならない。

表4.4.4 管の屈曲が少なく、容易に電線の引き入れ及び引き替えができる場合の最大電線本数

電線の	の太さ	合成樹脂管				
単線	より線					
(mm)	(mm ²)	14	16	22		
1.6		4	7	11		
2.0		3	6	9		
2.6	5. 5	3	5	7		
3. 2	8	2	3	5		

表4.4.5 絶縁電線を合成樹脂管内に収めるときの補正係数

電線の	合成樹脂管	
単線(mm)	より線(mm²)	100%倒加售
1.6		
2.0		2. 0
2.6	5. 5	
3. 2	8	1. 2
	14以上	1.0

表4.4.6 合成樹脂管の内断面積の32%及び48%

電線管の太さ	内断面積の	内断面積の	電線管の太さ	内断面積の	内断面積の
(管の呼び方)	$32\% (\text{mm}^2)$	$48\% (\text{mm}^2)$	(管の呼び方)	$32\% (\mathrm{mm}^{2})$	$48\% (\text{mm}^{2})$
14	49	73	36	307	461
16	81	122	42	401	602
22	121	182	54	653	980
28	196	295	70	1, 127	1, 691
			82	1, 497	2, 245

4.4.3 いんぺい配管の敷設

いんぺい配管の敷設は、4.3.3の(1)、(3)、(4)、(5)、(8)によるほか、次の各号によって行 わなければならない。

(1) 管の支持は、サドル、ハンガ等を使用し、その取付間隔は、1.5m以下としなければならない。 ただし、管相互及び管とボックス等との接続点又は管端から0.3m以下の箇所で管を固定させる。

なお、管の取付けは、温度変化による管の伸縮を十分考慮して行う。

- (2) 管の切り口は、切屑、かえりを取り除いた後、リーマ等によって平滑に仕上げなければならない。
- (3) 管を加熱する場合は、過度にならないようにし、焼け焦げを生じないように十分注意を払わなければならない。
- (4) 管を敷設する場合は、敷設する場所の状態に合わせて伸縮処理を行うものとする。

4.4.4 露出配管の敷設

露出配管の敷設は、4.3.4の(1)~(4)及び4.4.3に準じて行わなければならない。

4.4.5 位置ボック、スジョイントボックス

位置ボックス、ジョイントボックスなどは、4.3.6によるものとする。ただし、丸型露出ボッ

クスの直径は87mmとする。

4.4.6 管の接続

管の接続は、次の各号によって行わなければならない。

- (1) 管及び付属品は堅固に接続する。ただし、伸縮カップリング部分は、ルーズ接続とする。
- (2) 管相互の接続は、TSカップリングを使用して行わなければならない。なお、この場合はTSカップリング用の接着剤をむらなく塗布して完全に接続させなければならない。
- (3) 管とボックスの接続は、ハブ付ボックス又はコネクタを使用し、前号に準じて行わなければならない。
- (4) コンクリートに埋込敷設する以外の配管の接続においては、必要に応じて伸縮カップリング を使用しなければならない。

4.4.7 メタルラス張り壁などの木造造営物における配管

管メタルラス張り壁等における配管の敷設は、4.3.5 に準じて行わなければならない。

4.4.8 配管の養生、清掃

配管の養生及び清掃は、4.3.8 に準じて行わなければならない。

4.4.9 通 線

通線は、4.3.9 に準じて行わなければならない。

4.4.10 接 地

接地は、第6章「接地工事」による。

第 5 節 可とう電線管配線工事

4.5.1 一 般

- 1 可とう電線管工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) 可とう電線管内では、接続点を設けてはならない。
 - (3) 可とう電線管配線は、重量物の圧力又は著しい機械的衝撃を受ける場所には敷設してはならない。ただし、適当な防護装置を施した場合は、この限りではない。
 - (4) 可とう電線管は、二種金属製可とう電線管であること。ただし、露出した場所又は点検できるいんぺい場所であって、乾燥した場所において使用するもの(使用電圧が300Vを超える場合は、電動機に接続する部分で可とう性を必要とする部分に使用するものに限る。) にあってはこの限りではない。
 - 2 可とう電線管工事に使用する可とう電線管及びボックスその他付属品は、次の各号に適合した

ものでなければならない。

- (1) 可とう電線管及びボックスその他付属品は、電気用品取締法に適合した規格品でなければならない。
- (2) 可とう電線管の内面は、挿入する電線の被覆を損傷しないように滑らかなものであること。

4.5.2 管の太さの選定

1 同一太さの電線を同一の二種金属製可とう電線管に収容する場合の二種金属製可とう電線管 の太さは、表 4.5.1により選定しなければならない。

表 4.5.1 二種金属製可とう電線管の太さの選定

電線の	の太さ				電	線	本	数			
単線	より線	1	2	3	4	5	6	7	8	9	10
(mm)	(mm^2)		二種金	2属製	可とう'	電線管	の最小	太さ(管の呼	び方)	
1.6		10	15	15	17	24	24	24	24	30	30
2.0		10	17	17	24	24	24	24	30	30	30
2.6	5. 5	10	17	24	24	24	30	30	30	38	38
3. 2	8	12	24	24	24	30	30	38	38	38	38
	14	15	24	24	30	38	38	38	50	50	50
	2	17	30	30	38	38	50	50	50	50	63
	38	24	38	38	50	50	63	63	63	63	76
	60	24	50	50	63	63	63	76	76	76	83
	100	30	50	63	63	76	76	83	101	101	101
	150	38	63	76	76	101	101	101			
	200	38	76	76	101	101	101				
	250	50	76	83	101						
	325	50	101	101							

[備考1] 電線1本に対する数字は、接地線及び直流回路の電線にも適用する。

[備考2] 本表は、実験と経験に基づき決定したものである。

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3210節 金属製可とう電線管配線

3210-4 二種金属製可とう電線管の太さの選定

- 2 管の屈曲が少なく、容易に電線を引き入れ及び引き替えることができる場合は、前項にかかわらず次の各号によって行うことができる。
 - (1) 電線が同一太さで、断面積8mm2以下の場合は、表4.5.2 によって選定する。

表4.5.2 管の屈曲が少なく、容易に電線の引き入れ及び引き替えが

できる場合の最大電線本数

電線の	の太さ	二種金属製可と	こう電線管の太さ	電線管の太さ(管の呼び方)		
単線	より線					
(mm)	(mm ²)	15	17	24		
1.6		4	6	13		
2.0		3	5	10		
2.6	5. 5	3	4	8		
3. 2	8	2	3	6		

- (2) 前号以外の場合は、電線の被覆絶縁物を含む断面積の総和が管の内断面積の48%以下とすることができる。
- 3 異なる太さの絶縁電線を同一管内に収める二種金属製可とう電線管の太さは、表4.5.3により 電線の被覆絶縁物を含む断面積の総和が管の内断面積の32%以下としなければならない。
- 4 可とう電線管のうち一種金属製可とう電線管の太さは、表4.3.2に準じて選定するものとしなければならない。

表4.5.3 二種金属製可とう電線管の内断面積の32%及び48%

可とう線の太さ (管の呼び方)	内断面積の 32% (mm²)	内断面積の 48% (mm²)	可とう線の太さ (管の呼び方)	内断面積の 32%(mm²)	内断面積の 48% (mm²)
10	21	31	38	345	518
12	32	48	50	605	908
15	49	74	63	984	1, 476
17	69	103	76	1, 450	2, 176
24	142	213	83	1,648	2, 472
30	215	323	101	2, 522	3, 783

4.5.3 管の敷設

可とう電線管の敷設は、次の各号により行わなければならない。

- (1) 可とう電線管及び付属品相互は、堅固にかつ電気的に接続されなければならない。
- (2) 管の曲げ半径は、管内径の6倍以上とし、管内の電線が容易に引き替えることができるよう に敷設しなければならない。ただし、展開した場所又は点検できるいんぺい場所で管の取外し が容易に行える場所において、工事上やむをえない場合は、管内径の3倍以上とすることができる。
- (3) 管を造営材に取り付けるのには、サドル、ハンガなどを使用し、取り付け間隔は、1m以下と しなければならない。ただし、垂直に敷設し、人の触れるおそれのない場合は2m以下とするこ とができる。

なお、管端、管相互の接続点及び管とボックスの接続点では、接続点から0.3m以下で管を固定 しなければならない。

(4) 可とう電線管を他の金属管などと接続する場合は、表4.5.4によって適合した太さの管を選定し、コネクタ、カップリングによって堅固に、かつ、電気的に接続させなければならない。

表4.5.4 可とう電線管と金属管との適合

(単位 mm)

可とう電線管の種類	適合する金属製電線管の種類				
りこり电泳目の性類	薄 鋼	厚 鋼			
17	19	16			
24	25	22			
30	31	28			
38	39	36			
50	51	42			

- (5) 管とボックスとの接続は、コネクタを使用し、堅固に行わなければならない。
- (6) 管の端口には、電線の被覆を損傷しないようにブッシング又はコネクタを使用しなければならない。

(7) ボンディングに用いる接続線は、4.3.7(5)に準じて行わなければならない。

4.5.4 接 地

接地は、第6章「接地工事」による。

第 6 節 合成樹脂製可とう管配線工事

4.6.1 一 般

- 1 合成樹脂製可とう管工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) 合成樹脂製可とう管内では、電線に接続点を設けてはならない。
 - (3) 合成樹脂製可とう管は、重量物の圧力又は著しい機械的衝撃を受ける場所には敷設してはならない。ただし、適当な防護装置を施した場合は、この限りではない。
- 2 合成樹脂製可とう管工事に使用する管は、合成樹脂製可とう管及びCD管とする。
- 3 合成樹脂製可とう管及びCD管並びにその他付属品は、次の各号に適合したものでなければならない。
 - (1) 合成樹脂製可とう管及びCD管は電気用品取締法の適用を受けたものでなければならない。
 - (2) ボックスその他付属品は、合成樹脂製で電気用品取締法の適用を受けたものでなければならない。 ただし、プルボックス及びコンクリートに埋設するボックスについては、金属製のものとすることができる。
 - (3) 合成樹脂製可とう管及びCD管の端口及び内面は、電線の被覆を損傷しないような滑らかなものでなければならない。
 - (4) 合成樹脂製可とう管及びCD管の寸法は、表4.6.1に示すとおりとする。
 - (5) CD管は、直接コンクリートに埋込んで敷設する場合を除き、専用の不燃性又は自消性のある 難燃性の管又はダクトに収めて敷設しなければならない。

表4.6.1 合成樹脂製可とう管の寸法

(単位:mm)

太さ(管の呼び方)	外 径	内 径
14	21. 5	14. 0
16	23. 5	16. 0
22	30. 5	22. 0
28	36. 5	28. 0
36	45. 5	36. 0
42	52.0	42.0

CD管の寸法

(単位:mm)

太さ (管の呼び方)	外径	内径
14	21. 5	14. 0
16	23. 5	16. 0
22	30. 5	22. 0
28	36. 5	28. 0
36	45. 5	36. 0
42	52. 0	42.0

4.6.2 管の太さの選定

- 1 同一太さの電線を合成樹脂製可とう管に収容する場合の管の太さは、次の各号によって選定しなければならない。
 - (1) 管内に収容する電線の本数が10本以下の場合は、表4.6.2によって選定しなければならない。
 - (2) 管内に収容する電線の本数が10本以上の場合は、表4.6.3によって選定しなければならない。
- 2 管の屈曲が少なく、容易に電線を引き入れ及び引き替えることができる場合は、前項の規定にかかわらず、電線が同一太さで断面積8mm 2以下にあっては表4.6.4によるものとし、その他の場合にあっては、電線の被覆絶縁物を含む断面積の総和が管の内断面積の48%以下でなければならない。
- 3 異なる太さの電線を同一管内に収容する場合の管の太さは、表4.6.5、表4.6.6により電線の被 覆絶縁物を含む断面積の総和が合成樹脂製可とう管の内断面積の32%以下でなければならない。

表4.6.2 CD管及び合成樹脂製可とう管の太さの選定

電線 🛭	大さ				電	線	本	数			
単線	より線	1	2	3	4	5	6	7	8	9	10
(mm)	(mm^2)	CD	CD管及び合成樹脂製可とう				ぎの最/	小太さ	(管の	呼びた	,
1.6		14	14	14	14	16	16	22	22	22	22
2.0		14	14	14	16	22	22	22	22	22	28
2.6	5. 5	14	16	16	22	22	22	28	28	28	36
3. 2	8	14	22	22	22	28	28	28	36	36	36
	14	14	22	28	28	36	36	42	42		
	22	16	28	36	36	42	42				
	38	22	36	42							
	60	22	42								
	100	28									

[備考1] 電線1本に対する数字は、接地線及び直流回路の電線にも適用する。

[備考2] 本表は、実験と経験に基づき決定したものである。

内線規程 JEAC 8001-2000

3編1章 低圧配線方法

3115節 合成樹脂管配線

3115-4 管の太さの選定

表4.6.3 最大電線本数 (10本を超える電線を収める場合)

電線	太さ	CD管及び合成 樹脂製可とう管				
単線	より線					
(mm)	(mm^2)	22	28			
1.6		11	18			
2.0			15			
2.6	5. 5					
3.2	8					

表4.6.4 管の屈曲が少なく、容易に電線の引き入れ

及び引き替えができる場合の最大電線本数

電線	太さ	CD管及び合成 樹脂製可とう管			
単線	より線				
(mm)	(mm^2)	16	22		
1.6		9	17		
2.0		7	14		
2.6	5. 5	4	9		
3. 2	8	3	6		

表4.6.5 絶縁電線を合成樹脂管内に収めるときの補正係数

電線	太さ	CD管及び合成
単線	より線	樹脂製可とう管
(mm)	(mm^2)	
1.6		
2.0		1. 3
2.6	5. 5	
3. 2	8	1.0
	14以上	1.0

表4.6.6 CD管及び合成樹脂製可とう管の内断面積の32%及び48%

電線管の太さ	内断面積の32%	内断面積の48%
(管の呼び方)	(mm ²)	(mm^2)
14	49	73
16	64	96
22	121	182
28	196	295

4.6.3 管の敷設

合成樹脂製可とう管の敷設は、次の各号によって行わなければならない。

- (1) 合成樹脂製可とう管を造営材に取付ける場合は、サドル、ハンガ等を使用しその取付け間隔は、1.5m以下としなければならない。ただし、管相互及び管とボックス等との接続点又は管端から0.3m以下の箇所では、前記にかかわらず管を固定しなければならない。
- (2) 合成樹脂製可とう管及びCD管がコンクリート埋込みとなる場合は、1m以下の間隔で鉄筋に 結束しなければならない。
- (3) 合成樹脂製可とう管相互、CD管相互、合成樹脂製可とう管とCD管、合成樹脂製可とう管と 合成樹脂管、CD管と合成樹脂管は、それぞれ適合するカップリングを使用して接続することが できる。

4.6.4 接 地

接地は、第6章「接地工事」による。

4.6.5 その他

その他本節に定めのない事項は、第4節合成樹脂管配線工事に準じるものとする。

第7節 金属線び配線工事

4.7.1 一 般

- 1 金属線ぴ工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) 金属線の内では、電線に接続点を設けてはならない。ただし、電気用品取締法の適用を受ける二種金属線のを使用し、かつ、次により敷設する場合はこの限りではないものとする。
 - イ 電線を分岐する場合
 - ロ 接続点を容易に点検できるようにした場合
 - ハ 金属線ぴにD種接地工事が施された場合
 - 二 金属線の内の電線を外部に引き出す部分は、金属管工事、可とう電線管工事、合成樹脂管 工事又はケーブル工事によることとし、金属線のの貫通部分で電線が損傷するおそれがない ようにした場合
- 2 金属線ぴ工事に使用する金属線ぴ及びボックス並びにその他付属品は、次の各号に適合したも のでなければならない。
 - (1) 電気用品取締法の適用を受ける金属製の線び及びボックスその他付属品又は黄銅もしくは 銅で堅牢に製作したものであって、内面をなめらかにしたものであること。
 - (2) 黄銅製又は銅製の線ぴの形状は、幅が5cm以下、厚さが0.5mm以上のものでなければならない。

4.7.2 線ぴの敷設

金属線ぴの敷設は、次の各号によって行わなければならない。

- (1) 一種金属線ぴのベース部分は、1m以下の間隔で、造営材に堅固に取付け、キャップの固定などは、必要に応じてストラップなどを用いなければならない。ただし、ベースとキャップが組合せ構造となっているものはこの限りではない。
- (2) 二種金属線では、4.11.2(1)によるほか、支持間隔は1.5m以下とし、つりボルトの呼び径は 9mm以上とする。

なお、振れ止めを施さなければならない。

4.7.3 線ぴの接続

金属線ぴの接続は、次の各号によって行わなければならない。

- (1) 金属線び及び付属品は、堅固に、かつ、電気的に接続させなければならない。
- (2) 金属線ぴの接続部分は、ボンディングを行い電気的に接続させなければならない。
- (3) 金属線ぴを金属管又は可とう電線管に接続する場合は、堅固にかつボンディングにより電気的に接続させ、電線の被覆を損傷させるおそれのないように敷設しなければならない。
- (4) ボンディングに用いる接続線は、4.3.7(5)に準じて行わなければならない。

4.7.4 線び内配線

金属線の内の配線は、次の各号によって行わなければならない。

- (1) 一種金属線ぴに収める電線本数は、10本以下としなければならない。
- (2) 二種金属線ぴに収める電線本数は、電線の被覆絶縁物を含む断面積の総和が金属線ぴの内断面積の20%以下とすること。
- (3) 金属線の内に収めた電線は、整然と並べ電線の被覆が損傷されないように敷設しなければならない。

4.7.5 接 地

接地は、第6章「接地工事」による。

4.7.6 その他

その他本節に定めのない事項は、第3節 金属管配線工事に準じるものとする。

第8節 合成樹脂線 の配線工事

4.8.1 一 般

- 1 合成樹脂線ぴ工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) 合成樹脂線の内では、電線に接続点を設けてはならない。ただし、電気用品取締法の適用を 受ける合成樹脂製のジョイントボックスを使用する場合は、この限りではない。
- 2 合成樹脂線ぴ工事に使用する合成樹脂線ぴ及びボックスその他付属品は、電気用品取締法の適 用を受けたものでなければならない。

4.8.2 線ぴの敷設

合成樹脂線ぴの敷設は、次の各号によって行わなければならない。

- (1) 合成樹脂線ぴは、ベース部分を造営材に0.5m以下の間隔でねじ止めとするか、又は接着剤その他の方法にて堅固に取付けなければならない。
- (2) 合成樹脂線ぴの終端部分は、閉そくしなければならない。

4.8.3 線ぴの接続

合成樹脂線ぴの接続は、次の各号によって行わなければならない。

- (1) 合成樹脂線ぴ及び付属品は、相互にすきまなく接続しなければならない。
- (2) 隅部分の接続は、突き合わせ接続にて行うことを原則とする。

4.8.4 線ぴ内配線

合成樹脂線ぴの配線は、キャップ等によって電線を圧迫させないようにし、又器具端子部分に過大

な張力が加わらないように、十分な余長を見込んで行わなければならない。

4.8.5 接 地

接地は、第6章「接地工事」による。

4.8.6 その他

その他本節に定めのない事項は、第4節 合成樹脂管配線工事に準じるものとする。

第9節 フロアダクト配線工事

4.9.1 一 般

- 1 フロアダクト工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) フロアダクト内では、電線に接続点を設けてはならない。ただし、電線を分岐する場合において、その接続点が容易に点検できるときは、この限りではない。
- 2 フロアダクト工事に使用するフロアダクト及びボックスその他付属品は、次の各号に適合する ものでなければならない。
 - (1) 電気用品取締法の適用を受ける金属製フロアダクト及びボックスその他付属品又は厚さが2 mm以上の鋼板で堅ろうに製作し、亜鉛メッキ若しくはエナメル等で被覆したものでなければならない。
 - (2) 端口及び内面は、電線の被覆を損傷しないよう平滑に仕上げられたものでなければならない。

4.9.2 ダクトの敷設

フロアダクトの敷設は、次の各号によって行わなければならない。

(1) ダクトは、間隔2m以下ごとにダクトサポートを使用し、水平でかつ一直線になるようにし、 堅固に敷設しなければならない。

なお、ダクト端及びダクトとボックスの接続点では、接続点に近い箇所でダクトを支持する。

- (2) ダクト切り口は、平滑にし、また終端部を閉そくしなければならない。
- (3) ジャンクションボックス及びインサートは、床仕上面から突出させないようにし、かつ、水、 じんあいが侵入しないように密封しなければならない。

4.9.3 ダクトの接続

フロアダクトの接続は、次の各号によって行わなければならない。

- (1) ダクト相互、ダクトとジャンクションボックス及び金属管とジャンクションボックス等との間は、堅固に、かつ、電気的に接続しなければならない。
- (2) フロアダクトに係わる接地工事は、D種接地工事にて行わなければならない。
- (3) ダクト相互の接続は、ダクトカップリングにて行わなければならない。

(4) ダクトと金属管との接続は、ジャンクションボックス、エンドコネクタを使用して行わなければならない。

4.9.4 インサート

インサートには、インサートスタッドを取付け、インサートキャップを設ける。ただし、ジャンクションボックス、ダクトエンド及び間仕切りから一つ目のインサートには、インサートマーカを設けなければならない。

4.9.5 混触防止

強電流電線と弱電流電線とは、同一のダクト又はジャンクションボックスに収めてはならない。 ただし、強電流電線と弱電流電線との間に堅ろうな隔壁を設け、その金属部分にC種接地工事を施 した場合にはこの限りではないものとする。

4.9.6 ダクトの太さの選定

ビニル電線を同一フロアダクト内に収容する場合のフロアダクトの大きさは、電線の被覆絶縁物を含む断面積の総和がフロアダクトの内断面積の32%以下となるようなものを選定しなければならない。

4.9.7 その他

その他本節に定めのない事項は、第3節 金属管配線工事に準じるものとする。

第 10 節 セルラダクト配線工事

4.10.1 一 般

- 1 セルラダクト工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) セルラダクト内では、電線に接続点を設けてはならない。ただし、電線を分岐する場合で、その接続点が容易に点検できるときは、この限りではないものとする。
 - (3) セルラダクト内の電線を外部に引き出す場合は、当該セルラダクトの貫通部分で、電線が損傷するおそれがないように敷設しなければならない。
- 2 セルラダクト及び附属品は、次の各号に適合するものであること。
 - (1) セルラダクト及び附属品の材料は、鋼板であること。
 - (2) セルラダクトの端口及び内面は、電線の被覆を損傷しないようになめらかなものであること。
 - (3) セルラダクトの内面及び外面にさび止めのために、めっき又は塗装を施したものであること。 ただし、JIS G 3352「デッキプレート」のSDP 3に適合するものにあっては、この限りでは ない。
 - (4) 寸法は、次に適合すること。
 - イ セルラダクトの板厚は、セルラダクトの最大幅に応じ、表4.10.1に示すとおりとする。

セルラダクトの最大幅(mm)	セルラダクトの板厚(mm)
150以下のもの	1.2以上
	1.4 (JIS G 3352「デッキプレート」の

150を超えて200以下の	SDP2、SDP3又はSDP2Gに適合
もの	するものにあっては、1.2)以上
200を超えるもの	1.6以上

- ロ 附属品の板厚は、1.6mm以上であること。
- (5) 底板をセルラダクトに取り付ける部分は、次の計算式により算出した値の荷重を底板に加えたとき、セルラダクトの各部に実用上有害な永久ひずみ又は破損が生じない強度を有すること。

P = 5.88D

Pは、荷重 (N/m)

Dは、セルラダクトの断面積 (cm²)

4.10.2 ダクトの敷設

セルラダクトの敷設は、次の各号によって行わなければならない。

- (1) ダクト及びその付属品は、水がたまるような低い部分には敷設してはならない。
- (2) ダクトに設けた電線引出口は、床面から突出しないようにし、かつ水が浸入しないように密封しなければならない。
- (3) ダクトの終端部は、閉そくしなければならない。
- (4) ダクト相互、ダクトと造営物の金属製構造体、付属品及びダクトに接続する金属体とは堅ろうに、かつ電気的に接続しなければならない。

4.10.3 ダクト内の配線

セルラダクト内の配線は、次の各号によって行わなければならない。

- (1) 絶縁電線を同一のセルラダクトに収める場合のセルラダクトの大きさは、電線の被覆絶縁物を含む断面積の総和がセルラダクトの内断面積の20%以下としなければならない。
- (2) セルラダクトとフロアダクトとを接続する場合は、その接続部分が容易に点検できるように 措置しておかなければならない。
- (3) セルラダクト内の配線を引き出す部分の配線方法は、金属管配線、合成樹脂管配線、可とう電線管配線、フロアダクト配線又はケーブル配線の各工事でなければならない。

4.10.4 ダクトの接地

セルラダクトに係わる接地工事は、次の各号によって行わなければならない。

- (1) セルラダクト及びその付属品は、D種接地工事を行わなければならない。
- (2) 強電流電線と弱電流電線を同一のセルラダクトに収める場合は、C種接地工事を行わなければならない。
- (3) ボンディングに使用する接続線は4.3.7の(5)による。

4.10.5 その他

その他本節に定めのない事項は、第3節 金属管配線工事に準じるものとする。

第 11 節 金属ダクト配線工事

4.11.1 一 般

- 1 金属ダクト工事による低圧屋内配線工事は、次の各号によって行わなければならない。
 - (1) 電線は、絶縁電線とする。
 - (2) 金属ダクト内では、電線に接続点を設けてはならない。ただし、電線を分岐する場合で、その接続点が容易に点検できるときは、この限りでない。
 - (3) 金属ダクト内には電線の被覆を損傷するおそれのあるようなものを収容してはならない。
- 2 金属ダクト工事に使用する金属ダクトは、次の各号によるものでなければならない。
 - (1) 幅が5cmを超え、かつ、厚さが1.2mm以上の鋼板によって堅ろうに製作したものであること。 ただし、底板及び側板コンクリートの床に埋込んで設置した場合の上板は、厚さが1.2mm以上の 鋼板と同等以上の強度を有する金属製のものを使用することができるものとする。
 - (2) 内面は、電線の被覆を損傷するような突起がないものであること。内面及び外面は、さび 止めのために、メッキ又は塗装で防錆処理を施したものであること。

4.11.2 ダクトの敷設

金属ダクトの敷設は、次の各号によって行わなければならない。

- (1) ダクト又は支持する金物は、スラブその他の構造体につりボルト、ボルト等で堅固に取付けるものとし、あらかじめ取付け用インサート、ボルト等を埋込んでおかなければならない。ただし、やむを得ない場合には、十分な強度を有するメカニカルアンカーボルト等を使用して行うことができるものとする。
- (2) ダクトの水平支持間隔は2m以下とする。なお、垂直に敷設する場合は3m以下とする。ただし、 配線室内などの箇所に敷設する場合では、6m以下の範囲で各階支持とすることができるものと する。
- (3) ダクトを支持するつりボルトは、ダクトの幅が600mm以下のものでは呼び径9mm以上、600mm を超えるものでは呼び径12mm以上のものとしなければならない。
- (4) 耐熱処理を施すダクトは、耐火被覆材等をダクトの内面又は外面に張り付けなければならない。
- (5) ダクトの内部には、じんあいが侵入し難いように措置し、また、ダクト終端部を閉そくする。

4.11.3 ダクトの接続

金属ダクトの接続は、次の各号によって行わなければならない。

- (1) ダクト相互及びダクトと配分電盤、プルボックス等との接続は突合わせを完全にし、ボルト などによって行う。
- (2) ダクト相互、ダクトと配分電盤、プルボックス等との間では、ボンディングを行い電気的に接続しなければならない。
- (3) ボンディングに使用する接続線は4.3.7の(5)による。

4.11.4 ダクト内の配線

金属ダクトの配線は、次の各号によって行わなければならない。

- (1) ビニル電線を同一金属ダクト内に収める場合の金属ダクトの大きさは、電線の被覆絶縁物を含む断面積の総和が金属ダクトの内断面積の20%以下となるように選定しなければならない。ただし、電光サイン、出退表示灯その他これらに類する装置又は制御回路等の配線に使用する電線のみを収容する金属ダクトにあっては、50%以下とすることができる。
- (2) ダクト内に収める電線は、その重量がダクトの蓋に加わらないような位置に収めなければならない。
- (3) ダクト内に収容する電線は、各回路毎にひとまとめとし、電線支持物の上に整然と並べて支持する。ただし、垂直に用いるダクト内では、1.5m以下ごとに緊縛しなければならない。
- (4) ダクト内から電線を外部に引き出す部分は、金属管配線、合成樹脂管配線、可とう電線管配線又はケーブル配線の各工事によるものとし、金属ダクトの貫通部分で電線を損傷するおそれがないように措置しなければならない。
- (5) 幹線に用いるダクトを、防災用配線(耐火ケーブル及び耐熱ケーブルを除く)と一般用配線とで共用する場合は、4.3.6の(9)による。

4.11.5 接 地

接地は、第6章「接地工事」による。

4.11.6 その他

その他本節に定めのない事項は、第3節 金属管配線工事に準じるものとする。

第 12 節 バスダクト配線工事

4.12.1 一 般

バスダクト工事に使用するバスダクトは、次の各号によるものとしなければならない。

- (1) バスダクト及び付属品は、JIS C 8364「バスダクト」による。なお、耐火バスダクトは、関係法令に適合するものでなければならない。
 - イ 断面積20 mm以上の帯状の銅又は直径5.0mm以上の管状若しくは丸棒状の銅であること。 ロ 断面積30 mm以上の帯状のアルミニウムであること。
- (2) バスダクトの種類は、表4.12.1に示すとおりとする。

表4.12.1 バスダクトの種類

名 称			形	豆	t		備考
フィーダバスダクト	屋	内	用	換 非 1	気 換 気	形形	途中に負荷を接続しない
フィータハスタクト	屋	外	用	換	気 換 気	形	もの。

プラグインバスダクト	屋	内 厞	非	: 換	気	形	途中に負荷接続用として プラグの差込みを設けた もの。
------------	---	-----	---	-----	---	---	-----------------------------------

4.12.2 ダクトの敷設

バスダクトの敷設は、次の各号によって行わなければならない。

- (1) ダクト又は支持金物は、スラブその他構造体につりボルト、ボルト等で堅固に取付けるものとし、あらかじめ取付け用インサート、ボルト等を埋込んでおかなければならない。ただし、やむを得ない場合には、十分な強度を有するメカニカルアンカーボルト等を使用して行うことができるものとする。
- (2) ダクトの水平支持間隔は、3m以下とする。また、垂直に敷設する場合で、配線室内などの 箇所に敷設する部分は、6m以下の範囲で各階支持とすることができるものとする。
- (3) ダクトの終端部及びプラグインバスダクトのうちで使用しない差込み口は閉そくする。ただし、換気形の場合はこの限りではないものとする。
- (4) ダクトを垂直に取付ける場合は、必要に応じスプリング等を用いた防振構造の支持金物を 使用しなければならない。

4.12.3 ダクトの接続

バスダクトの接続は、次の各号によって行わなければならない。

- (1) ダクト相互、導体相互及びダクトと配分電盤、プルボックス等との接続は突合わせを完全にし、ボルトなどによって堅固に行う。
- (2) アルミ導体と銅導体との間では、電食が生じないように措置を講じて接続しなければならない。
- (3) ダクト相互及びダクトと配分電盤等との間では、ボンディングを行い、電気的に接続する。 ただし、電気的に完全に接続されている場合は、ダクト相互の接続部のボンディングは省略す ることができる。
- (4) ボンディングに使用する接続線は表4.12.2に示す太さの軟銅線又は同等以上の銅帯又は平編すずメッキ銅線とする。

表4.12.2 ボンド線の太さ

配線用遮断器などの定格電流[A]	ボンド線の太さ[mm]
400 以下	22 以上
600 以下	38 以上
1000 以下	60 以上
1200 以下	100 以上

(5) ダクトが床又は壁を貫通する場合は、その貫通箇所でダクトを接続してはならない。

4.12.4 接 地

接地は、第6章「接地工事」による。

4.12.5 その他

その他本節に定めのない事項は、第3節 金属管配線工事に準じるものとする。

第 13 節 ケーブル配線工事

4.13.1 一 般

ケーブル工事による低圧屋内配線工事は、次の各号によって行わなければならない。

- (1) 電線は、ビニル外装ケーブル、クロロプレン外装ケーブル又はポリエチレン外装ケーブル(以下この節において「ケーブル」という。)とする。
- (2) 重量物の圧力又は著しい機械的衝撃を受けるおそれのある場所にケーブルを敷設してはならない。 ただし、その部分のケーブルを金属管、ガス鉄管、合成樹脂管等に収めるなど適当な防護措置を 講ずる場合は、この限りではない。
- (3) 低圧屋内配線の使用電圧が300V以下の場合は、管その他のケーブルを収める防護装置の金属製部分、金属製の電線接続箱及びケーブルの被覆に使用する金属体には、D種接地工事を施す。ただし、次のいずれかに該当する場合において、管その他ケーブルを収める防護装置の金属製部分については、この限りではない。
 - イ 防護装置の金属製部分の長さが4m以下のものを乾燥した場所に設置するとき。
 - ロ 屋内配線の使用電圧が直流で300V以下又は交流にあっては対地電圧150V以下の場合においては、防護装置の金属製部分の長さが8m以下のものを人が容易に触れるおそれがないように設置するとき又は乾燥した場所に設置するとき。
- (4) 低圧屋内配線の使用電圧が300Vを超える場合は、管その他のケーブルを収める防護装置の金属製部分、金属製の電線接続箱及びケーブルの被覆に使用する金属体には、C種接地工事を施さなければならない。ただし、人が触れるおそれがないように設置する場合は、D種接地工事とすることができる。

4.13.2 ケーブルの敷設

ケーブルの敷設は、次の各号によって行わなければならない。

(1)ケーブルを造営材に取付ける場合は、ケーブルに適合するサドル、ステープル等でその被覆を 損傷しないように堅固に取付け、その支持点間の距離は2m以下としなければならない。ただ し、人の触れるおそれがある場所又は造営材の側面あるいは下面に敷設する場合は、1m以下 としなければならない。

なお、ケーブル相互及びケーブルとボックス、器具等の接続箇所では接続点に近い箇所で支持 する。

(2) 5.5mm²以下のケーブルは、いんぺい配線にて敷設する場合においてケーブルに張力が加わらないように措置する場合に限り、ころがし配線にて行うことができるものとする。ケーブルを曲げる場合は、被覆が傷まないように行い、その屈曲半径は、次によるものとする。

イ 低圧ケーブルは、仕上り外径(トリプレックス形ケーブルの場合はより合わせ外径)の

6倍以上(単心ケーブルにあっては8倍以上)とする。ただし、しゃへい付ケーブルは8倍以上(単心ケーブルにあっては10倍以上)とする。

なお、体裁を必要とする場所の平形ビニルケーブルの露出配線でやむを得ない場合では、電 線被覆にひび割れが生じない程度に屈曲させることができる。

- ロ 低圧耐火ケーブル及び耐熱ケーブルは、仕上がり外径の6倍以上とする。ただし、単心 の低圧耐火ケーブルは、8倍以上としなければならない。
- (3) ケーブルを保護する金属管、ガス鉄管、合成樹脂管等の管の端口は、滑らかにし、ケーブル の引替えなどにおいてケーブル被覆を損傷しないようにしなければならない。
- (4)ケーブルを収める金属管、ガス鉄管、合成樹脂管等の管の太さは、被覆を含むケーブルの仕上がり外径の1.5倍以上となる内径とし、2本以上のケーブルを収容する場合は、集束させた状態での最小外接円の径の1.5倍以上となる内径の管としなければならない。ただし、管の長さが短く、容易にケーブルの引き替えが行える場合にあっては、この限りではない。
- (5) ケーブルを金属製のボックスなどに挿入する場合は、ゴムブッシング、ケーブルコネクタ等を使用してケーブルの被覆が損傷しないように措置させなければならない。

4.13.3 ケーブルの接続

ケーブルの接続は、4.1.18(電線の接続)によるほか、導体及び被覆絶縁物を損傷させないようにし、かつ、次の各号によって行わなければならない。

- (1)ケーブル相互の接続は、キャビネット、アウトレットボックス又はジョイントボックスなどの内部で行うか又は適当な接続箱を使用して行い、接続部分を露出させないこと。
 - ただし、次の各号のいずれかによる場合はこの限りではない。
 - イ 接続部分及び被覆物が露出しないようにJIS C 2813 (1992)「屋内配線用差込形電線コネクタ」に適合するボックス不要形差込電線コネクタなどを使用して敷設する場合。注)ここでいう接続器具などによる接続例は、内線規程 JEAC 8001-2000資料3-1-3参照
 - ロ やむを得ない場合でケーブル接続部分と同等以上の性能を有する合成樹脂によりモール ドしたとき又は絶縁チューブを使用して十分に被覆し、保護した場合。注)ここでいう絶縁 チューブとは、接続部分のケーブルを被覆と一体化し、破壊しなければ取り外せないものを いう。
- (2) ケーブルを器具端子に接続する場合は、キャビネット、アウトレットボックス等の内部で行わなければならない。ただし、空どう部分、天井ふところ又はこれらに類する場所で器具端子を堅ろうな難燃性絶縁物で密閉し、ケーブルの導体絶縁物が造営材から離隔した状態を保つことが出来る場合にあっては、この限りではないものとする。

4.13.4 ケーブルの造営材貫通

ケーブルが造営材を貫通する場合は、次の各号によって行わなければならない。

(1)ケーブルが造営材を貫通する場合は、合成樹脂管、がい管等を使用し、ケーブルを保護させなけ

ればならない。ただし、ビニル外装ケーブルが木製野縁を貫通する場合はこの限りでないものと する。

(2)メタルラス、ワイヤラス又は金属板張りの造営材をケーブルが貫通する場合は、合成樹脂管又はがい管にケーブルを収め、管が移動しないような管止め措置を施さなければならない。

第 14 節 キャブタイヤケーブル配線工事

4.14.1 一 般

キャブタイヤケーブル工事による低圧屋内配線工事は、4.13.1の(3)、(4)によるほか、次の各号によって行わなければならない。

(1) 電線は、表4.14.1によるキャブタイヤケーブルとする。

表4.14.1 キャブタイヤケーブルの使用区分

	施設場所使用電圧	屋	内	屋側、	屋外
電線の種類		300V以下	300V超過	300V以下	300V超過
ビニルキャ	ァブタイヤケーブル	Δ	×	Δ	×
	クロロプレンキャブ タイヤケーブル	Δ	×	Δ	×
二種	クロロスルホン化 ポリエチレンキャブ タイヤケーブル	Δ	×	Δ	×
	ゴムキャブタイヤケーブル	Δ	×	×	×
	クロロプレンキャブ タイヤケーブル	0	0	0	0
三種四種	クロロスルホン化ポ リエチレンキャブタ イヤケーブル	0	0	0	0
	ゴムキャブタイヤケーブル	0	0	×	×

[備考] 記号の意味は、次のとおりである。

- ・○は、使用できる。
- ・△は、露出場所又は点検できるいんぺい場所でのみ使用できる。
- ・×は、使用できない。
- (2) キャブタイヤケーブルは、断面積 2 mm²以上のものとする。
- (3) キャブタイヤケーブルは、重量物の圧力又は著しい機械的衝撃を受けるおそれのある場所に敷設してはならない。ただし、その部分を金属管、ガス鉄管、合成樹脂管等に収めるなど適当な防護措置が講じられた場合にあっては、この限りではないものとする。

4.14.2 ケーブルの敷設

キャブタイヤケーブルの敷設は、4.13.2の(2)、(4)、(5)によるほか、次の各号によって行わなければならない。

- (1)キャブタイヤケーブルを造営材に取付ける場合は、適合するサドル、ステープル等によっての 被覆が損傷しないように堅固に取付け、その支持点間の距離は1m以下とする。
- (2) キャブタイヤケーブルを曲げる場合は、その被覆が損傷しないように行わなければならない。

4.14.3 ケーブルの接続

キャブタイヤケーブルの接続は、4.13.3に準じて行わなければならない。

4.14.4 ケーブルの造営

キャブタイヤケーブルによる造営材の貫通は、4.13.4に準じて行わなければな材貫通らない。

第 15 節 高圧ケーブル配線工事

4.15.1 一 般

高圧ケーブル工事による高圧屋内配線工事は、次の各号によって行わなければならない。

- (1) 電線は、6,600V架橋ポリエチレン電力ケーブルとする。
- (2) 重量物の圧力又は著しい機械的衝撃を受けるおそれのある場所では、ケーブルに適当な防護装置を設けなければならない。
- (3) 管その他ケーブルを収める防護装置の金属製部分、金属製の電線接続箱及びケーブルの被覆に 使用する金属体には、A種接地工事を施さなければならない。ただし、人が触れるおそれがな いように設置した場合にあっては、D種接地工事によって行うことができるものとする。
- (4) 高圧屋内配線と他の高圧屋内配線、低圧屋内配線、管灯回路の配線、弱電流電線、水管、ガス 管等との離隔は、4.1.15によるものとする。

4.15.2 ケーブルの敷設

高圧ケーブルの敷設は、4.13.2の(4)によるほか、次の各号によって行わなければならない。

- (1)ケーブルを曲げる場合は、被覆がいたまないように行い、その屈曲半径は、仕上がり外径の8倍以上としなければならない。ただし、単心ケーブルにあっては、10倍以上としなければならない。
- (2) ケーブルを収める金属管、ガス鉄管、合成樹脂管等の管は、1条1管とし、それらの管の太さは、被覆を含むケーブルの仕上がり外径の1.5倍以上となる内径のものとする。

4.15.3 ケーブルの接続

ケーブルの接続は、4.13.3に準じたエポキシ樹脂等によるモールド工法及び熱収縮処理材料等を 使用した熱収縮工法または常温収縮工法のいずれかによるものとする。

4.15.4 ケーブルの造営材貫通

ケーブルによる造営材の貫通は、4.13.4に準じて行わなければならない。

第 16 節 ケーブルラック配線工事

4.16.1 一 般

ケーブルラック工事による低圧屋内配線工事及び高圧屋内配線工事は、4.13.1、4.15.1によるほか、 次の各号によって行わなければならない。

- (1)ケーブルラック工事に使用するケーブルラック及びその他付属品は、次によるものとする。
 - イ ケーブルラックの種類及び大きさは設計図書のとおりとし、付属品はケーブルラック及び 設置場所に適合したものとする。
 - ロ ケーブルラックの形状は、親桁(枠)と子桁(クロスバー)により構成された梯子形とし、子 桁間隔は300mm以下とする。

なお、屈曲部の曲げ角度は、そこに敷設されるケーブルの中での最大の仕上り外径のケーブルを 基準にして、そのケーブルの屈曲条件が満足されるものでなければならない。

- ハ ケーブルラックは、その表面にケーブル被覆を損傷させるおそれのあるような突起等があってはならない。
- ニ ケーブルラック、その他金物類の部材及びその構造は、ケーブルラック本体、ケーブルの 重量又は点検用通路等が併設される場合にあっては、歩行者の重量等を考慮し、それらの荷 重に十分耐える強度を有する構造のものでなければならない。
- (2) ケーブルラックを支持する金物は、スラブその他の構造体につりボルト、ボルト等によって堅固 に取付けるものとし、あらかじめ取付け用インサート、ボルト等を埋め込んでおくものとする。
- (3) ケーブルラックの設置場所は、点検が行え、かつ、ケーブルが多数集中する箇所とし、特殊箇所(ガス危険場所、粉塵危険場所、セルロイド庫、火薬庫等の危険場所)には設置してはならない。

4.16.2 ケーブルラックの敷設

ケーブルラックの敷設は、次の各号によって行わなければならない。

- (1) ケーブルラックの水平支持間隔は、2m以下としなければならない。ただし、 直線部と直線部以外との接続点にあっては、接続点に近い箇所で支持する。
- (2) ケーブルラックの垂直支持間隔は、3m以下としなければならない。ただし、配線室内など の部分にあっては、6m以下の範囲で各階支持とすることができる。
- (3) ケーブルラック本体相互間は、それぞれの連結部をボルト等により堅固に、かつ、電気的に接続しなければならない。
- (4) ケーブルラックの終端部、自在継手部及びエキスパンション部は、ボンディング処理を行い 電気的に接続させなければならない。
- (5) ボンディングに使用する接続線は、低圧配線にあっては4.3.7の(5)による太さのものとし、

高圧配線が併設される場合は最小太さが5.5mm²とし、更に低圧配線の定格電流値が225Aを超えるような回路が含まれるときは14mm²以上の太さとしなければならない。

(6) ケーブルラックを支持するつりボルトは、ケーブルラックの幅が600mm以下のものでは径9mm 以上、600mmを超えるものにあっては径12mm以上としなければならない。

4.16.3 ケーブルの敷設

ケーブルラックにケーブルを敷設する場合は、次の各号によって行わなければならない。

- (1) ケーブルは、ケーブルラック上に整然と並べ、水平部においては2m以下、垂直部では1.5m 以下の間隔で支持しなければならない。
- (2) ケーブルラック上でのケーブルの接続は、4.13.3に準じて行うものとする。
- (3) ケーブルラック上でのケーブルは、原則として積み重ねて敷設してはならない。ただし、単心ケーブルの俵積みの場合にあっては、この限りでないものとする。
- (4) ケーブルを垂直に敷設する場合は、特定の子桁に重量が集中しないようにしなければならない。

4.16.4 混触防止

ケーブルラックに敷設する高圧配線が他の高圧配線、低圧配線、弱電流電線、管灯回路の配線、 金属製水管、ガス管若しくはこれらに類するものと接近し、交さする場合は、15cm以上離隔する か又はケーブル相互間に耐火性の隔壁を設けなければならない。

4.16.5 防火壁貫通

ケーブルラックに敷設したケーブルが防火壁を貫通する場合は、4.1.11の(4)に準じて行うものとする。

4.16.6 その他

その他本節に定めのない事項は、第13節ケーブル配線工事に準じて行うものとする。

第 17 節 ライティングダクト配線工事

4.17.1 一 般

ライティングダクト配線工事は、次の各号によって行わなければならない。

- (1) ライティングダクトの付属品は、ライティングダクトに適合したものでなければならない。
- (2) ライティングダクト及びその付属品は、電気用品取締法に適合したものでなければならない。
- (3) ライティングダクトの種類及び定格は、表4.17.1に示すとおりとする。

表4.17.1 ライテイングダクトの種類及び定格

種類	定格電圧(V)	定格電流(A)
----	---------	---------

	固定 導体カバー及び I形 ダクトカバーなし	125, 300 (250)	15, 20, 30	
ライティングダクト	固定 導体カバー及び Ⅱ形 ダクトカバーあり	125	15, 20, 30	
	走 行 形	125, 300 (250)	15, 20	
プラグ,アダプタ	固定形	125, 300 (250)	6 10 15 20	
	走 行 形	7 120, 300 (250)	6, 10, 15, 20	

注1 ライテイングダクトの長さは、15Aのものは1, 1. 5, 2, 3, 4m, 20A以上のものは3mが標準である。

- 2 ライテイングダクトの構造等の詳細については、JIS C 8366 [ライティングダクト] を参照 すること。
- 3 ()を付したものは、なるべく用いない。
- (4) ライティングダクト配線の使用電圧は、300V以下でなければならない。
- (5) ライティングダクトは、屋内で、かつ、乾燥した露出場所及び点検できるいんぺい場所に限定して、設置できるものとする。

4.17.2 ダクトの敷設

ライティングダクトの敷設は、次の各号によって行わなければならない。

- (1) ライティングダクトは、壁、床、天井等の造営材を貫通して敷設してはならない。
- (2) ライティングダクトに接続する部分の配線は、電線の被覆が損傷を受けるおそれがないように敷設しなければならない。
- (3) ライティングダクト相互及び導体相互は、堅ろうに、かつ、電気的及び機械的に完全に接続しなければならない。
- (4) ライティングダクトを造営材に取り付ける場合は、次により、かつ、堅固に取付けなければならない。
 - イ 支持箇所は、ライティングダクト1本に対し、2箇所以上とする。
 - ロ 支持点間の距離は、2m以下とする。
- (5) ライティングダクトの開口部は、下向きに敷設すること。ただし、ライティングダクトを人が 容易に触れるおそれがない場所において、内部にじんあいが侵入し難いように敷設する場合 にあっては、横向きとすることができる。
- (6) ライティングダクトの終端部は、エンドキャップを使用して閉そくさせておかなければならない。

4.17.3 接 地

ライティングダクトは、D種接地工事を施さなければならない。ただし、対地電圧が150V以下で、かつ、ライティングダクトの長さが4m以下の場合にあっては、接地工事を省略することができるものとする。

第 18 節 平形保護層配線工事

4.18.1 一 般

平形保護層配線工事による屋内配線工事は、次の各号によって行わなければならない。

- (1)電線は平形導体合成樹脂絶縁電線とする。
- (2) 平形保護層配線は、造営物の床面又は壁面に敷設しなければならない。ただし、造営材を貫通して設置してはならない。
- (3) 平形保護層配線は、事務所、展示場及び店舗等以外の場所に敷設してはならない。
- (4) 平形導体合成樹脂絶縁電線に電気を供給する電路においては、漏電遮断器を設置しなければならない。
- (5) 平形導体合成樹脂絶縁電線は、定格電流が30A以下の過電流遮断器で保護される分岐回路で使用しなければならない。
- (6) 電路の対地電圧は、150V以下としなければならない。

4.18.2 平形保護層配線の敷設

平形保護層配線の敷設は、次の各号によって行わなければならない。

- (1) 平形保護層配線を床面に敷設する場合は、粘着テープにより固定し、かつ、適当な防護装置の下部に敷設する。また、壁面に敷設する場合は、厚さ1.2mm以上の鋼板を用いたダクト内に収めて敷設する。ただし、床面からの立ち上がり部において、その長さを、0.3m以下とし、かつ、適当なカバーを設けて敷設する場合にあっては、この限りでないものとする。
 - (2) 平形保護層配線を床面に敷設する場合は、床面を清掃し、付着物等を取り除き平滑にさせ、幅30mm以上の粘着テープを使用して、1.5m以下の間隔で固定させる。
 - (3) 平形保護層内には、電線の被覆を損傷するおそれのあるものを収めてはならない。
 - (4) 電線は、重ね合わせて敷設してはならない。ただし、折り曲げ箇所、交さ部分、接続部及び電源引き出し部分にあっては、この限りではないものとする。
 - (5) 電線と通信用フラットケーブルを平行して敷設する場合は、0.1m以上の離隔を保たなければならない。

なお、交差する場合は、金属保護層で分離し、原則として直交させなければならない。

- (6) 上部接地保護層相互及び上部接地保護層と電線の接地線とは、電気的に接続させなければならない。
- (7) 緑色で表示された電線の導体は、接地線以外の用途に使用してはならない。
- (8) 電線の折り返し部分は、敷設後これを伸ばして再使用してはならない。

4.18.3 平形保護層配線の接続

平形保護層配線の接続は、次の各号によって行わなければならない。

(1) 電線相互、電線専用のコンセント等との接続は、専用のコネクタを使用して行わなければならない。

- (2) 他の電線又はコンセントとの接続は、次によって行う。
 - イ 電線を平形保護層の外部に引き出す部分は、ジョイントボックスを使用する。
 - ロ 電線に適合した端子台を使用する。ただし、接続加工済のもの又は一体となっている ものを使用する場合にあってはこの限りではないものとする。

4.18.3 付属品その他

平形保護層配線工事に使用する平形保護層、ジョイントボックス、差込み接続器及びその他付 属品は、次の各号に適合するものでなければならない。

- (1) 平形保護層は、JIS C 3652「電力用フラットケーブルの施工方法」の付属書「電力用フラットケーブル」に適合するものでなければならない。
- (2) ジョイントボックス及び差込み接続器は、電気用品取締法の適用を受けたものでなければならない。
- (3) 上部保護層、上部接地用保護層、下部保護層、ジョイントボックス差込み接続器及びその他付属品は、当該平形導体合成樹脂絶縁電線に適合したものでなければならない

第5章 屋外配線工事・構内電線路工事

第 5 章 屋外配線工事·構内電線路工事

第 1 節 一般事項

5.1.1 適用範囲

この章は、屋外配線工事及び構内電線路工事に適用する。

- 1 屋側配線、屋外配線の定義は、下記によるものとする。
 - (1) 屋側配線は、造営物の外側面又は造営物に隣接する屋外の負荷設備へ電気を供給するため造営物の外側面に施設される配線をいう。
 - (2) 屋外配線は、屋外に施設される配線のうち屋側配線以外のものをいう。
- 2 構内電線路の定義は、下記によるものとする。

構内電線路は、需要場所の構内に施設する電線路をいう。

5.1.2 工事の種類

屋外配線工事及び構内電線路工事での工事の種類は、下記に示すものとする。

- 1 屋外配線工事の種類は、屋側配線工事及び屋外配線工事とする。
- 2 構内電線路工事の種類は、下記に示すものとする。
 - (1) 架空電線路工事
 - (2) 屋側電線路工事
 - (3) 屋上電線路工事
 - (4) 地中電線路工事
 - (5) トンネル内電線路工事

第2節 屋側・屋外配線工事

5.2.1 一 般

低圧の屋側配線工事又は屋外配線工事は、低圧屋内配線工事に準じて行い、その工事方法は次の各号によって行わなければならない。

(1) 低圧の屋側配線又は屋外配線の工事方法は、金属管配線工事、合成樹脂管配線工事、可 とう電線管配線工事、ケーブル配線工事、キャブタイヤケーブル配線工事、ケーブルラッ ク配線工事又は表5.2.1に示す施設場所の区分に応じた工事としなければならない。

表5.2.1 低圧屋側・屋外配線の工事方法

使用電圧 施設場所 区分 の区分	300V以下のもの	300Vを越えるもの
展開した場所	がいし引き工事又は バスダクト工事	がいし引き工事
点検できるいんぺい場所	がいし引き工事又は バスダクト工事	

- (1) 低圧の屋側配線又は屋外配線の開閉器及び過電流遮断器は、屋内配線用ものと兼用してはならない。ただし、配線の長さが屋内電路の分岐点から8m以下の場合にあって、かつ、屋内電路用の過電流遮断器の定格電流が15A(配線用遮断器においては20A)以下のときは、この限りではないものとする。
- (2) 低圧の屋側配線又は屋外配線が他の低圧の屋側配線若しくは屋外配線、弱電流電線等、水管、ガス管若しくはこれらに類するものと接近し、又は交差する場合は、4.1.14に準ずる。

5.2.2 がいし引き配線工事

がいし引き配線工事による低圧の屋側配線又は屋外配線は、第4章 第2節がいし引き配線工事に準じて行い、その工事方法は表4.1.9、4.1.10に準ずるものとする。

5.2.3 金属管配線工事

金属管工事による低圧の屋側配線又は屋外配線は、第4章 第3節 金属管配線工事に準じて行うものとする。

5.2.4 合成樹脂管配線工事

合成樹脂管工事による低圧の屋側配線又は屋外配線は、第4章 第4節 合成 樹脂管配線工事 に準じて行うものとする。

5.2.5 可とう電線管配線工事

可とう電線管工事よる低圧の屋側配線又は屋外配線は、第4章 第5節 可とう電線管配線工事 に準じて行うものとする。

5.2.6 バスダクト配線工事

バスダクト工事による低圧の屋側配線又は屋外配線は、第4章 第6節 バスダクト配線工事に 準じて行い、ダクトは内部に水が侵入し溜まらないような構造のものでなければならない。

5.2.7 ケーブル配線工事

ケーブル工事による低圧の屋側配線又は屋外配線は、第4章 第13節 ケーブル配線工事に準じて行うものとする。

5.2.8 キャブタイヤケーブル配線工事

キャブタイヤケーブル工事による低圧の屋側配線又は屋外配線は、第4章 第14節 キャブタイヤケーブル配線工事に準じて行うものとする。

5.2.9ケーブルラック配線工事

ケーブルラック工事による低圧の屋側配線又は屋外配線は、第4章 第16節ケーブルラック配 線工事に準じて行うものとする。

第 3 節 架空電線路工事

5.3.1 架空電線の高さ

1 低圧架空電線又は高圧架空電線(以下「架空電線」という。)の高さは、表5.3.1によるものとする。

なお、表5.3.1において示される施設場所以外の場合にあっては、地表上5m以上とする。ただし、低圧架空電線を道路以外の箇所に施設する場合又は絶縁電線若しくはケーブルを使用した対地電圧が150V以下の低圧架空電線であって屋外照明の用に供するものは、交通に支障がないように施設する場合は、地表上4m以上とすることができる。

表5.3.1 架空電線の高さ

(単位:m)

施設場	易所他	低 圧	高 圧	〔電技〕 〔解釈〕 (条)
道 路	横断	6. 0	6.0	
道 路	その他	5. 0	5. 0	
鉄道又は	軌道横断	5. 5	5. 5	68
横断歩道橋の上		3. 0	3. 5	

上	記	以	外	4. 0	5. 0	
水	ム 面 上 船舶の航行等に危険を及ぼさない高さ					
氷雪 積	の多 雪		方の 上		人又は車馬の通行等に 危険を及ぼさない高さ	

配電規程 JEAC 7001-1999

第2章 架空電線路

第215節 架空電線の施設

215-4 電線の高さ

- 2 橋の下部その他これに類する場所に施設する架空き電線は、前項の規定にかかわらず、地表上3.5m以上とする。
- 3 架空電線を水面上に施設する場合は、電線の水面上の高さを船舶の航行等に危険を及ぼさないような位置に保持しなければならない。

5.3.2 架空電線と建造物との接近

1 架空電線を建造物に接近した状態で施設する場合は、架空電線と建造物の造営材との離隔距離を表5.3.2に示す値以上としなければならない。

裸電線(B種接地工事を施した中性線及び接地側電線に限る)を使用する場合は、低圧絶 縁電線と同等の扱いとする。

表5.3.2 架空電線と他物との最小離隔距離

眼场工作物	関係工作物 佐麗 電圧			離隔距離(m)			保 安 工 事 (○印は適用されるもの)		
)	位置	電圧	低圧絶縁 電線	多心型 電線	高圧絶縁 電線	ケーフ゛ル	電線	支持物	径間
	A 上方	低圧	1. 2.	0	1.	0	_	1	_
建造物の上部造営材(屋根、ひさし、物干し台、その他	接近	高圧			1. 0 2. 0		0	0	0
の人が上部に 乗るおそれが ある造営材)	B 側方	低圧		8) 0. 4 2	0.	4	_	1	_
	下方	高圧			0. 4 (0. 8) 1. 2		0	0	0
世 建 をの他の人が を防護 でのという。	C ₁ 上方	低圧	0.4	(0.8) 1.2	0.	4	_	ı	_
造物部 1 具に	収 ' ' 同圧			(0.8) 1.2		0	0	0	
A	C ₂ 上方	低圧		接触しなり	ければよい		_	_	_

	側方 下方 接近	高圧			0	0	0
上記以外 の場合 (建造物の)	D 下方	低圧	(0. 8) 0. 4 1. 2	0. 4	_	_	1
その他の	接近	高圧		0. 4 (0. 8) 1. 2	0	0	0
が建造物方に施設		低圧	0.4	0. 3	_	_	_
ろ場合	接近	高圧		0. 4	_	_	

(備考) 1. () 内数値は、人が容易に触れるおそれがないように施設した場合に適用する。

2. 一 内数値は、防護具の使用期間が6箇月以内のものに限り適用する。

配電規程 JEAC 7001-1999

第2章 架空電線路

第215節 架空電線の布設

215-5 架空電線と他物との最小離隔距離

2 架空電線が建造物と接近する場合において、架空電線を建造物の下方に施設するときは、 架空電線と建造物との離隔距離は表5.3.3によって示される値以上とし、かつ、危険のおそれ がないように施設しなければならない。

表5.3.3 架空電線と建造物の下方との離隔距離

架空電線の種類	電線の種類	離隔距離
	絶縁電線 多心型電線	0.6m
低圧架空電線	高圧絶縁電線 特別高圧絶縁電線 ケーブル	0.3m
高圧架空電線	高圧絶縁電線 特別高圧絶縁電線	0.8m
同旦本生电脉	ケーブル	0.4m

- 3 低圧架空電線又は高圧架空電線が建造物に施設される簡易な突出し看板その他の人が上部 に乗るおそれがない造営材と接近する場合において、次の各号のいずれかにより施設すると きは、低圧架空電線又は高圧架空電線と当該造営材との離隔距離については、第1項第二号及 び第三号並びに前項の規定によらないことができる。
 - (1) 別に告示する規格に適合する防護具により防護された絶縁電線、多心型電線又はケーブル (以下「低圧防護具に収めた絶縁電線等」という。)を使用する低圧架空電線を当該造営材に接触しないように施設する場合

- (2) 絶縁電線を使用する低架空電線を当該と40cm以上離して施設する場合
- (3) 別に告示する規格に適合する防護具により防護された高圧絶縁電線、特別高圧絶縁電線 又はケーブル(以下「高圧防護具に収めた高圧絶縁電線等」という。)を使用する高圧 架空電線を当該造営材に接触しないように施設する場合

電気設備技術基準

平成13年3月1日改正

第2章 第2節 他の電線、他の工作物等への危険の防止(省令29条)

高低圧架空電線と建造物との接近(解釈76条)

5.3.3 架空電線と道路などとの接近又は交さ

1 架空電線が高架道路、横断歩道橋、鉄道、軌道、索道(機器を含み索道用支柱を除く。)又は低圧電車線(以下「道路等」という。)と接近した状態で敷設させる場合は、架空電線と道路等との離隔距離を表5.3.4によって示される値以上としなければならない。ただし、架空電線と道路等(索道及び低圧電車線を除く)との水平離隔距離が、低圧架空電線にあっては1m以上、高圧架空電線にあっては1.2m以上ある場合はこの限りでないものとする。

なお、高圧架空電線は高圧保安工事を施したものとする。

表5.3.4 架空電線と道路等との離隔距離

道路等の区分	低圧架空電	線	高圧架空電線		
担	電線の種類	離隔距離	電線の種類	離隔距離	
道路、横断歩道橋、 鉄道又は軌道	絶縁電線 多心型電線 高圧絶縁電線 特別高圧絶縁電線 ケーブル	3m	高圧絶縁電線 特別高圧絶縁電線 ケーブル	3m	
索道若しくはその	絶縁電線 多心型電線	0.6m	高圧絶縁電線 特別高圧絶縁電線	0.8m	
支柱又は低圧電車 線	高圧絶縁電線 特別高圧絶縁電線 ケーブル	0.3m	ケーブル	0.4m	
低圧電車線数の	絶縁電線 多心型電線		高圧絶縁電線 特別高圧絶縁電線	0.6m	
低圧電車線路の 支持物	高圧絶縁電線 特別高圧絶縁電線 ケーブル	0.3m	ケーブル	0.3m	

2 架空電線が道路等と交さする場合(同一支持物に敷設した場合を除く)において、架空電線 を道路等の上に敷設するときは、前項の規定に準じ行わなければならない。ただし、道路、横 断歩道橋、鉄道又は軌道との離隔距離に係わる部分を除くものとする。

5.3.4 架空電線と架空弱電流電線との接近又は交さ

1 架空電線と架空弱電流電線とを接近した状態で敷設する場合は、次の各号によって行わなければならない。

- (1) 高圧架空電線路には、高圧保安工事を施さなければならない。ただし、高圧架空電線が 電力保安通信線(高圧又は特別高圧の架空電線路の支持物に設置したものに限る)又はこ れに直接接続する電力保安通信線と接近する場合は、この限りではないものとする。
- (2) 低圧架空電線が架空弱電流電線と接近する場合は、低圧架空電線と架空弱電流電線との離隔距離を0.6m(架空弱電流電線の管理者の承諾を得た場合において、架空弱電流電線が絶縁電線と同等以上の絶縁効力のあるもの又は通信用ケーブルを使用したときには0.3m)以上としなければならない。ただし、低圧架空電線に高圧絶縁電線、特別高圧絶縁電線又はケーブルを使用した場合にあっては、低圧架空電線と架空弱電流電線との離隔距離は、0.3m(架空弱電流電線の管理者の承諾を得た場合において、架空弱電流電線が絶縁電線と同等以上の絶縁効力のあるもの又は通信用ケーブルを使用したときには0.15m)以上とすることができる。
- (3) 高圧架空電線が架空弱電流電線と接近する場合は、高圧架空電線と架空弱電流電線との 離隔距離を0.8m(電線にケーブルを使用した場合では0.4m)以上としなければならない。
- (4) 架空電線と架空弱電流電線の支持物との離隔距離は、低圧架空電線の場合で0.3m以上、 高圧架空電線の場合で0.6m(電線にケーブルを使用した場合では0.3m)以上としなければな らない。
- 2 架空電線と架空弱電流電線とが交さする場合において、架空電線を架空弱電流電線の上方 に設置するときは、前項の規定に準じて行わなければならない。
- 3 架空電線が架空弱電流電線と接近する場合は、架空電線を架空弱電流電線の下方において 水平距離で架空弱電流電線の支持物の地表上の高さに相当する距離以内に設置してはならな い。ただし、技術上やむを得ない場合において第1項の(2)~(4)での規定に準じて行うか又は 次のいずれかによって行うときにあっては、この限りではないものとする。
 - (1) 架空弱電流電線路が基礎の安全率、高圧架空電線路の支持物の強度及び木柱等の支線設置に係わる規定に準じて行われ、かつ、危険のないように設置された場合
 - (2) 高圧架空電線と架空弱電流電線との水平距離が2.5m以上であり、かつ、架空弱電流電線の支持物の倒壊等の際に、架空弱電流電線が高圧架空電線に接触するおそれがないように設置された場合
- 4 架空電線が架空弱電流電線と交さする場合は、架空電線が架空弱電流電線の下方に設置してはならない。ただし、技術上やむを得ない場合において、前1項の(2)~(4)及び3項(1)の規定に準じて行うときにあっては、この限りではないものとする。

5.3.5 低圧架空電線相互の接近又は交さ

低圧架空電線を他の低圧架空電線と接近した状態又は交さして敷設する場合は、低圧架空電線相互の離隔距離を0.6m(いずれか一方の電線に高圧絶縁電線、特別高圧絶縁電線又はケーブルを使用した場合では0.3m)以上とし、低圧架空電線と他の低圧架空電線の支持物の離隔距離においては0.3m以上としなければならない。

5.3.6 高圧架空電線と低圧架空電線との接近又は交さ

- 1 高圧架空電線と低圧架空電線とが接近した状態又は高圧架空電線が低圧架空電線と交さする ような場合においては、高圧架空電線を低圧架空電線の上方の位置に設置させ次の各号によ って行わなければならない。
 - (1) 高圧架空電線路には、高圧保安工事を施さなければならない。ただし、当該電線路の電線が、電線路の一部に接地工事を施した低圧架空電線と接近する場合にあっては、この限りではないものとする。
 - (2) 高圧架空電線と低圧架空電線又はその支持物との離隔距離は、表5.3.5に示される値以上のものとしなければならない。

表5.3.5 高圧架空電線と低圧架空電線又はその支持物との離隔距離

低圧架空電線又は その支持物の区分	高圧架空電線の種類	離隔距離
低圧架空電線	高圧絶縁電線 特別高圧絶縁電線	0.8m
	ケーブル	0.4m
低圧架空電線	高圧絶縁電線 特別高圧絶縁電線	0.6m
の支持物	ケーブル	0.3m

2 高圧架空電線が低圧架空電線と交差する場合は、高圧架空電線は低圧架空電線の下方の位置に設置してはならない。ただし、技術上やむを得ない場合において、特に防護措置などを 講じたときはこの限りではないものとする。

5.3.7 高圧架空電線相互の接近又は交さ

高圧架空電線と他の高圧架空電線とを接近した状態又は交さする場合は、次の各号によって 行わなければならない。

- (1) 上方又は側方の位置に設置する高圧架空電線路には、高圧保安工事を施さなければならない。
- (2) 高圧架空電線相互の離隔距離は、0.8m(いずれか一方がケーブルである場合は0.4m)以上とし、高圧架空電線と他の高圧架空電線の支持物との離隔距離においては0.6m(電線にケーブルを使用した場合では0.3m)以上としなければならない。

5.3.8 架空電線と植物との離隔距離

1 低圧架空電線と植物との離隔距離は、0.2m以上としなければならない。ただし、低圧架空電線に高圧絶縁電線、特別高圧絶縁電線、ケーブルを使用するか又は低圧防護具に収容した 絶縁電線等である場合において、低圧架空電線が植物に接触しないようにしたときにはこの 限りでないものとする。

- 2 高圧架空電線は、植物に接触しないように施設しなければならない。
- 5.3.9 架空引込線の高さ
 - 1 架空引込線の高さは、次の各号によらなければならない。
 - (1) 架空引込線が道路(車道と歩道との区別がある場合は、車道部分)を横断する場合の高さは、5m以上としなければならない。ただし、技術上やむを得ない場合において、交通に支障がないときには3m以上とすることができる。
 - (2) 架空引込線が鉄道又は軌道を横断する場合の高さは、軌道面上5.5m以上としなければならない。
 - (3) 架空引込線を横断歩道橋の上方に設置する場合の高さは、その路面上3m以上としなければならない。
 - (4) 架空引込線が(1)~(3)以外で設置された場合の高さは、地表上4m以上としなければならない。ただし、技術上やむを得ない場合において交通に支障がないときには、2.5m以上とすることができる。
 - 2 高圧架空引込線の高さは、5.3.1の1項に準じるものとする。ただし、技術上やむを得ない場合において他に支障とならないときは、3.5m以上とすることができる。

なお、この場合において、高圧架空引込線にケーブル以外の電線を使用しているときは、 架空引込線の下方において危険である旨の表示を行わなければならない。

5.3.10 建 柱

建柱は、次の各号によって行わなければならない。

(1) 電柱は、表5.3.6に示すものとしなければならない。

表5.3.6 電柱の種類

呼称	規格	備考
コンクリート柱	JIS A 5373 「プレキャストプレストレスト コンクリート製品」	1種JISマーク
鋼管柱	電気設備の 第59条「鉄柱又 技術基準 は鉄塔の構成等」	表示品目

(2) 鉄筋コンクリート柱又は鋼管を主体とする鉄柱の根入れは、表5.3.7に示すものとする。 ただし、傾斜地、岩盤等では、根入れ長さを適宜増減してもよい。

表5.3.7 電柱の根入れの長さ

材質区分	設計荷重 [kN{kg}]	全 長 [m]	根入れ [m]
鉄筋コンクリー ト柱		15以下	全長の1/6以上
	6.87{700}以下	15を超え16以下	2. 5以上
		16を超え20以下	2. 8以上
	6.87 {700} を超え	14以上15以下	全長の1/6以上
	9.81{1000}以下	15を超え20以下	2. 8以上
鋼板組	6.87 {700}以下	15以下	全長の1/6以上

立柱	15を超え16以下	2. 5以上
鋼管柱		

- (3) 根かせは、次の各号による。
 - イ 根かせの埋設深さは、地表下0.3m以上とする。
 - ロ 根かせは、電線路の方向と平行に取付ける。ただし、引留箇所は、直角に取付ける。
 - ハ コンクリート根かせは、径13mm以上の亜鉛めっきUボルトで締付ける。
- (4) 電柱には、足場ボルト及び名札(建設年月、所有者名、その他)を設ける。 なお、足場ボルトは道路に平行に取付けるものとし、地上2.6mの箇所より、低圧架空線では最下部電線の下方約1.2m、高圧架空線では高圧用アームの下方約1.2mの箇所まで、順次柱の両側の交互に取付け、最上部は2本取付ける。

5.3.11 腕金の取付け

腕金の取付けは、次の各号によって行わなければならない。

(1) 腕金は、架線する電線の太さ及び条数に適合したもので、その長さは表5.3.7に示されるものとする。

なお、腕金にがいしを取付ける場合は、必要に応じて亜鉛めっきが施されたがいし振止め用金物を使用する。

表5.3.8 腕金の長さ

電圧 種別	線条 数別	腕金の長さ (mm)	備考
	2	900以上	昇降空間が必要な場合は1,200mm以上
高圧	3	1,500 "	昇降空間が必要な場合は1,800mm以上
	4	1,800 "	昇降空間が必要な場合は2,250mm以上
低圧	2	750 <i>II</i>	昇降空間が必要な場合は900mm以上
圧	3	1, 200 "	昇降空間が必要な場合は1,500mm以上

- (2) 腕金は、1回線に1本設けるものとし、負荷側に取付けなければならない。 なお、電線引留柱においては、電線張力が加わる側の反対側に取付けなければならない。
- (3) 腕金は、電線路の内角が大きな場合にあっては、電柱を挟んで2本抱き合わせとし、内角が小さい場合は、両方向に対し別々に設ける。
- (4) 腕金は、十分な太さの亜鉛めっきボルトを用いて電柱に取付け、必要に応じてアームタイにより補強し、堅固に留付ける。
- (5) コンクリート柱で貫通ボルト穴がない場合には、腕金はアームバンドで取付け、アーム タイはアームバンドで取付ける。
- (6) 抱え腕金となる場合は、抱えボルトを使用し、平行となるように締めつける。
- (7) 腕金の取付け穴加工は、腕金の亜鉛めっき処理を行う前に行わなければならない。

5.3.12 がいしの取付け

がいしの取付けは、次の各号によって行わなければならない。

(1) がいしは、表5.3.8に示すものとする。

表5.3.9 がいし及びがい管類

呼称	規格
高圧ピンがいし	JIS C 3821 高圧ピンがいし
高圧がい管	JIS C 3824 高圧がい管
高圧耐張がい管	JIS C 3826 高圧耐張がい管
玉がいし	JIS C 3832 玉がいし
低圧つば付がい管	JIS C 3843 低圧つば付がい管
低圧ピンがいし	JIS C 3844 低圧ピンがいし
低圧引留がいし	JIS C 3845 低圧引留がいし

- (1) がいし間の距離は、高圧線間で0.4m以上、低圧線間で0.3m以上としなければならない。 なお、昇降用の空間を設ける場合は、電柱の左右両側を0.3m以上としなければならない。
- (2) バインド線は、原則として銅ビニルバインド線とする。

なお、電線の太さが3.2mm以下の場合は、バインド線を1.6mmとし、ピンがいしでのバインド法は、両たすきの3回一重巻きとする。電線の太さが4mm以上の場合は、バインド線を2.0mmとし、ピンがいしでのバインド法は、両たすきの3回二重巻きとする。

5.3.13 架 線

架線は、次の各号によって行わなければならない。

- (1) 架空線に使用する電線は、低圧架空電線にあっては絶縁電線、多心型電線又はケーブルを、高圧架空電線にあっては高圧絶縁電線、特別高圧絶縁電線又はケーブルとする。
- (2) 使用電圧が300V以下の低圧架空電線は、ケーブルである場合を除き、直径3.2mm(絶縁電線である場合は、直径2.6mm)の硬銅線又はこれと同等以上の強さ及び太さのものとしなければならない。
- (3) 使用電圧が300Vを超える低圧架空電線又は高圧架空電線は、直径3.5mm以上の被覆銅線 又はケーブルである場合を除き、市街地においては、直径5mmの硬銅線又はこれと同等以上 のものとし、市街地以外においては、直径4mmの硬銅線又はこれと同等以上の強さ及び太さ のものとしなければならない。
- (4) 架線における電線相互を接続する場合、電線の電気抵抗を増加しないとともに、ジャンパー線を除き強さを20%以上減少させてはならない。また、電線がケーブルである場合を除き、表5.3.9によらなければならない。

表5.3.10 接続材料の種類と適用区分

接続電線種別電線状態		銅線相互	アルミ線相互 (アルミ被鋼線)	銅線とアルミ線	銅線とアルミ 以外の電線
張力が加わる		圧縮型直線スリ	圧縮型直線スリ		
部分にお		ーブ	ーブ		
直線接線	苊	B型銅スリーブ			
		圧縮型ジャンパ	圧縮型ジャンパ	異種金属用の圧	圧縮型分岐スリ
		ースリーブ	ースリーブ	縮型分岐スリー	ーブ
	ジャン	圧縮型分岐スリ	圧縮型分岐スリ	ブ	締付型コネクタ
3E 4-23	パー部	ーブ	ーブ	異種金属用の締	<u> </u>
張力が	分	締付型コネクタ	締付型コネクタ	付型コネクター	
加わら		<u> </u>	<u> </u>		
ない。		S型スリーブ			
部分の 接続		圧縮型分岐スリ	圧縮型分岐スリ	異種金属用の圧	圧縮型分岐スリ
1女形	分	ーブ	ーブ	縮型分岐スリー	ーブ
		締付型コネクタ	締付型コネクタ	ブ	締付型コネクタ
	司 刀	<u> </u>	<u> </u>	異種金属用の締	<u> </u>
		S型スリーブ		付型コネクター	

配電規程 JEAC 7001-1999

第2章 架空電線路

215 節 架空電線の施設

215-7 電線の接続

- (5) 絶縁電線相互の接続箇所では、カバー又はテープ巻きによって絶縁処理を行わなければならない。
- (6) 架空ケーブルのちょう架用線には、亜鉛めっき鋼より線を使用し、ハンガ等にてちょう 架する場合の間隔は0.5m以下としなければならない。

5.3.14 変圧器の取付け

変圧器の取付けは、次の各号によって行わなければならない。

(1) 電柱での変圧器の取付けは、地上4.5m以上の高さの位置とし、変圧器台又は電柱に堅固 に取付ける。

なお、変圧器台は、腕金、アームタイ、ボルト、厚さ30mm以上の防腐剤を塗布した木板 又はコンクリート板等にて組立たものとする。

- (2) 高圧カットアウト、高圧負荷開閉器、避雷器、低圧開閉器等は保守管理が容易な箇所に取付けなければならない。
- (3) 高圧側ヒューズの容量は、表5.3.10に示すものとする。

表5.3.11 高圧側ヒューズの容量

	変圧器 容量	ヒューズ 容量(A)	電気方式	変圧器 容量	ヒューズ 容量(A)
電気方式	(kVA)	6kV		(kVA)	6kV

		5	3			5	3	
)// - /* b=	単相変圧	単相変圧	10	3		三相変圧	10	3
単相3線式及び 単相2線式	器の場合	20	10	三相3線式	器の場合	20	3	
+112/M/20	пп - > //// П	30	10		пп -> 200 С	30	5	
		50	15			50	10	

- (4) 高圧引下線の太さは、5.5mm2以上としなければならない。
- (5) 低圧側保護装置の容量及び低圧引上線の太さは、表5.3.11に示すものとする。なお、低 圧引上線は、ビニルケーブル又は600V架橋ポリエチレンケーブルとする。

表5.3.12 変圧器容量に対する低圧側保護装置及び低圧引上線の使用区分

	変圧器	低圧	ヒューズ	コネクタ	
電気方式	容量	開閉器			低圧引上線
电水沙	(kVA)	(A)	(A)	(A)	8年71上版
	5	100	75	75	$14\mathrm{mm}^2$ -2^C
単相2線式 (100V)	10	100	150	150	$38\mathrm{mm}^2\mathrm{-}2^\mathrm{C}$
(1001)	20	300	_	200	$100 \mathrm{mm}^2 \mathrm{-}2^{\mathrm{C}}$
	5	100	50	75	$8\mathrm{mm}^2\mathrm{-}3^\mathrm{C}$
	10	100	75	75	$14\mathrm{mm}^23^\mathrm{C}$
単相3線式 (100V/200V)	20	200	150	150	$38\mathrm{mm}^2\mathrm{-}3^\mathrm{C}$
(1001, 2001)	30	200	_	200	$100 \text{mm}^23^{\text{C}}$
	50	300	_	500	$150 \text{mm}^23^{\text{C}}$
三相3線式	5	100	30	30	$8\mathrm{mm}^2\mathrm{-}3^\mathrm{C}$
(200V)	10	100	50	75	$14\mathrm{mm}^23^\mathrm{C}$
(三相) 変圧器	20	100	100	150	$38\mathrm{mm}^2\mathrm{-}3^\mathrm{C}$
	30	200	150	150	$100 \text{mm}^23^{\text{C}}$
	50	200	200	200	$150 \text{mm}^23^{\text{C}}$

(備考)単相2線式(200V)は単相3線式と同一太さで、2^cとする。

5.3.15 支線及び支柱

支線及び支柱の設置は、次の各号によって行わなければならない。

- (1) 支線及び支柱の本柱への取付け位置は、高圧線の下方としなければならない。 なお、支線は、高圧線から0.2m以上、低圧線から0.1m以上の離隔距離を確保しなければ ならない。ただし、危険のおそれがないようにした場合にあってはこの限りではないもの とする。
- (2) 支線は、所定の太さの亜鉛めっき鋼より線とする。また、支柱は、本柱と同質のものとしなければならない。
- (3) 支線を電柱に取付けるには、木柱の場合は、支線当て金物を、コンクリート柱の場合は、 支線バンドを用い堅固に取付けなければならない。
- (4) 支線の根かせは、その引張荷重に十分耐えうるようにし、その埋設深さは本柱根入れの

深さに準じなければならない。支線下部に腐食のおそれのある支線は、その地ぎわの上下 0.3mまでの箇所に支線用テープを巻付けるなど適当な防食処理を施さなければならない。 ただし、支線棒を用いた場合にあってはこの限りではないものとする。

- (5) 高圧架空電線路の支線には、玉がいしを取付け、その位置は支線が切断された場合にあっても、地表上2.5m以上となる箇所とする。
- (6) 人及び車両の交通に支障のおそれのある箇所に設置する支線には、支線ガードを設けなければならない。
- (7) 木柱に支柱を取付ける場合は、木柱に接する部分はこれに適合するように削り、亜鉛めっきボルトで締め付け、さらに径4mmの亜鉛めっき鉄線で堅固に取り付けなければならない。また、コンクリート柱の場合にあっては、適合した取付金具によって取付けるものとする。

5.3.16 接 地

架空電線路に使用した金物類及び変圧器に係わる接地は、第6章 接地工事に準じて行わなければならない。

第 4 節 屋側·屋上電線路工事

5.4.1 低圧屋側電線路

- 1 がいし引き工事による低圧屋側電線路は、展開した場所に限るものとし、その施工は第4章 第2節 がいし引き配線工事に準じて行うものとする。
- 2 金属管工事による低圧屋側電線路は、木造以外の造営物に施設する場合に限るものとし、 その施工は第4章 第3節 金属管配線工事に準じて行うものとする。
- 3 合成樹脂管工事による低圧屋側電線路は、第4章 第4節 合成樹脂管配線工事に準じて行う ものとする。
- 4 可とう電線管工事による低圧屋側電線路は、木造以外の造営物に施設する場合に限るものとし、その施工は第4章 第5節 可とう電線管配線工事に準じて行うものとする。
- 5 バスダクト工事による低圧屋側電線路は、展開した場所で、木造以外の造営物に施設する場合に限るものとし、その施工は第4章 第12節 バスダクト配線工事に準じて行うものとする。なお、バスダクトの構造は、内部に水が侵入してもたまらないような構造にしなければならない。
- 6 ケーブル工事による低圧屋側電線路は、金属外被を使用するケーブルにあっては木造以外 の造営物に施設する場合に限るものとし、その施工は第4章 第13節 ケーブル配線工事に準じ て行うものとする。
- 7 キャブタイヤケーブル工事による低圧屋側電線路は、第4章 第14節 キャブタイヤケーブル 配線工事に準じて行うものとする。
- 8 ケーブルラック工事による低圧屋側電線路は、木造以外の造営物に設置する場合に限るものとし、その施工は第4章 第16節 ケーブルラック配線工事に準じて行うものとする。

5.4.2 高圧屋側電線路

- 1 高圧屋側電線路に使用する電線は、ケーブルとする。
- 2 ケーブルは、適当な防護装置に収めるか又は人の触れるおそれのないように施設しなければならない。

なお、木造の造営物においては、ケーブルと造営物とが電気的に接続しないように措置しなければならない。

5.4.3 低圧屋上電線路

- 1 低圧屋上電線路に使用する電線は、ケーブルである場合を除き、直径2.6mmの硬銅線又はこれと同等以上の太さ及び強さのものでなければならない。
- 2 電線は、ケーブルである場合を除き、絶縁電線でなければならない。
- 3 電線は、ケーブルである場合を除き、その支持点間の距離は15m以下としなければならない。
- 4 電線がケーブルである場合は、5.3.13の(6)に準じて施工しなければならない。

5.4.4 高圧屋上電線路

高圧屋上電線路の電線は、ケーブルを使用し、展開した場所に施設するものとする。

5.4.5 低圧引込線

- 1 電線は、ケーブルである場合を除き、直径2.6mmの硬銅線又はこれと同等以上の太さ及び強 さのものでなければならない。ただし、径間が15m以下の場合に限り、直径2mmの硬銅線又は これと同等以上の太さ及び強さのものでなければならない。
- 2 電線は、絶縁電線又はケーブルとする。
- 3 電線が屋外用ビニル絶縁電線である場合は、人が触れるおそれがないように措置しなければならない。
- 4 電線がケーブルである場合は、5.3.13の(6)に準じて施工しなければならない。ただし、ケーブルの長さが1m以下の場合は、ちょう架することを要しないものとする。

5.4.6 高圧引込線

- 1 電線が高圧絶縁電線である場合は、直径5mmの硬銅線又はこれと同等以上の太さ及び強さの ものでなければならない。
- 2 電線がケーブルである場合は、5.3.13の(6)に準じて施工しなけならない。
- 3 高圧架空引込線の高さは、3.5m以上としなければならない。この場合において、高圧架空 引込線の電線がケーブル以外のものを使用するときは、その電線の下方に危険である旨を表 示しなければならない。

第 5 節 地中電線路工事

5.5.1 一 般

地中電線路は、管路引入れ式、暗きょ式又は直接埋設式のいずれかの方式とし、次の各項により行わなければならない。

5.5.2 電 線

地中電線路に使用する電線は、ケーブルとする。

5.5.3 管路引入れ式地中電線路

管路引入れ式地中電線路は、次の各号によって行わなければならない。

- (1) 管路引入れ式地中電線路の構造は、堅ろうで車両その他の重量物の荷重に耐え、かつ、水が侵入し難たい構造としなければならない。
- (2) 管路の埋設深さは、表5.5.1に示される値によらなければならない。

表5.5.1 管路の埋設深さ

管路埋設場所	埋設深さ
重量物の荷重が加わる場所	0.8m以上
建屋周辺、PA等の一般の人が 立入る場所	0.6m以上
上記以外の場所	0.3m以上

(3) 管路引入れ式地中電線路に使用される管の種別は、表5.5.2に示されるものとする。

表5.5.2 管の種別

呼 称	規格番号	規格名称	備考
鉄筋コンクリート管	JIS A 5303	遠心力鉄筋コンクリート管	普通管B形
金 属 管	JIS C 8305	厚鋼電線管	
"	JIS G 3452	配管用炭素鋼鋼管	
"	JIS G 3469	ポリエチレン被覆鋼管	
合成樹脂管	JIS G 8430	硬質ビニル電線管	
II .	JIS G 6741	硬質塩化ビニル管	
"	JIS G 3653	波付き硬質合成樹脂管	
陶管	JIS G 3653	多孔陶管	

- (4) 管路内の配線は、第3節の12項~14項に準じて行わなければならない。
- (5) 管路に金属管を使用する場合は、金属管に防食処理を施さなければならない。

5.5.4 暗きょ式地中電線路

暗きょ内の配線工事は、4.1.2~4.1.5に準じて行わなければならない。

5.5.5 直接埋設式地中電線路

- 1 直接埋設式地中電線路は、ケーブルを直接埋設するか又は合成樹脂管、プラスチック可と う電線管、多孔陶管(以下「保護管」という。)に収容し、埋設する方式で行うものとする。
- 2 ケーブル及び保護管の埋設深さは、表5.5.3に示される値としなければならない。

表5.5.3 管路埋設深さ

管路埋設場所	埋設深さ
重量物の荷重が加わる場所	1.2m以上
上記以外の場所	0.6m以上

5.5.6 地中電線相互及び地中電線と地中弱電流電線との離隔

- 1 地中電線における低圧ケーブルと高圧ケーブル又は特別高圧ケーブルが接近又は交さする 場合においては、それぞれのケーブルに難燃性の被覆を有するものを使用するか又は堅ろう な耐火質の隔壁がある場合を除き、0.3m以下に接近させてはならない。ただし、マンホール、 ハンドホール等の内部にあって、接触しないようにした場合は、この限りでないものとする。
- 2 地中弱電流電線が地中電線と接近又は交差する場合は、低圧又は高圧ケーブルで、0.3m以下、特別高圧では0.6m以下に接近させてはならない。ただし、地中弱電流電線と地中電線とが相互に堅ろうな耐火性の隔壁が設けられている場合にあっては、この限りでないものとする。

5.5.7 ハンドホール及びマンホールの設置

ハンドホール及びマンホールの設置は、次の各号によって行わなければならない。

- (1) ハンドホール及びマンホールは、その設置場所における重量物の荷重に耐える強度を有するものでなければならない。
- (2) ハンドホール及びマンホールは、鉄筋コンクリート製とし、工場製作プレハブ組立型又は現場製作のものとする。
- (3) 道路に設置するハンドホール及びマンホールは、そのふたの部分と道路面とで凹凸を生じないような埋設深さとしなければならない。
- (4) ハンドホール及びマンホールの内壁には、ケーブル及びケーブル接続部等を支持する支持金物類を堅ろうに取付け、支持金物類には木製、磁器製、プラスチック製等の枕を取付けるものとする。
- (5) ハンドホール及びマンホールの内壁には、ケーブル敷設に必要なケーブルフック及び昇降用ステップ等を設けるものとする。
- (6) ハンドホール及びマンホールの鋳鉄製のふたは、防錆塗装を施したものとし、水の侵入 し難い構造としなければならない。

なお、重量物の荷重が加わる場所にハンドホール及びマンホールを設置する場合のふたは、重量物の荷重に耐えうる強度を有するものでなければならない。

- (7) ハンドホール及びマンホールの鋳鉄製のふたには、記号・略号の表示によって管理者又は用途を明示できるようにしなければならない。
- (8) ハンドホール及びマンホールは、D種接地工事を施さなければならない。

5.5.8 管路の敷設

管路の敷設は、次の各号によって行わなければならない。

- (1) 管は、突起、破損、障害物など通線に支障となるようなものがあってはならない。
- (2) 管路の敷設箇所は、掘削後に床の突き固めを行い、路床部分で凸凹が生じないよう平滑にしなければならない。

なお、路床部分の状態によっては、さらに栗石等の敷きならしを行って突き固めるか又 はコンクリート打ちを行うなどして路床部分を整えたものとしなければならない。

- (3) 管の埋設部分は、砂又は良質な土を敷きつめ、石、瓦礫等が直接管に接しないようにしなければならない。
- (4) 管路等の敷設は、次によって行うものとする。
 - イ 管の敷設は、直線状に行いハンドホール又はマンホール間での中央部分の埋設深さを 最も浅くし、両側へ水勾配をつける。ただし、技術的又は現場状態によって水勾配が得 られない場合はこの限りでないものとする。
 - ロ 管の敷設は、必要に応じて枕を使用し、その設置間隔は2m程度とする。枕は砂袋又は 枕木を使用し、管を堅固に固定させる。
 - ハ 多孔陶管の敷設は、砂利地業のうえ均しコンクリートを平らに打設し、その上に敷設する。なお、多孔陶管の接続は、多孔陶管間にゴムパッキンをいれて、ボルトにて締めつけるものとする。
 - ニ B型コンクリート管の敷設は、管の向きを通線に支障とならないような方向にそろえて 行うものとする。

なお、コンクリート管を切断した場合は、切断面が通線に支障とならないように処理 し、モルタル塗り等を行う。

ホ プラスチック可とう管の敷設は、荷姿に応じて管を延線させて敷設する。多条敷設の場合は、管相互の間隔を均等に保持するために簡易ゲージ等を使用したときは、管の埋設時に簡易ゲージ等を撤去しなければならない。

なお、管を延線させる場合は、ターンテーブル又はドラムを使用して行い、把を引摺って管に損傷が生じないようにし、又延線した管がねじれないようにして行わなければならない。

(5) 異種管の接続は、適合した異物継手等を使用して行わなければならない。

5.5.9 ケーブルの敷設

(1)ケーブルの敷設は、次の各号によって行わなければなわない。

また、管内にケーブルを敷設する場合は、次によって行うものとする。

- イ ケーブルを敷設する管は、ケーブルの引入れに先立ち管内を十分清掃しなければなら ない。
- ロ ケーブルの敷設は、管端口でケーブルが損傷しないように保護処理をし、又ケーブル 引入れ時に過大の張力が加わらないように十分留意して行わなければならない。
- ハ ケーブルを敷設した管は、管端口にケーブルの形状に適合した防水装置を取付け、水 や土砂が管内に侵入しないように処理しておかなければならない。
- ニ ケーブルを敷設しない管は、管端口に防水栓又は盲ぶたを取付け、水や土砂が管内に 侵入しないように処理しておかなければならない。
- (1) ケーブルは、ハンドホール及びマンホール内で必要に応じ、余長を確保させるものとする。
- (2) ケーブルの接続は、ハンドホール及びマンホール内で行うものとする。
- (3) ケーブルを建物屋外側又は電柱に沿って立ち上げる場合は、地表上2.5mの高さまで保護管に収めなければならない。
- (4) ハンドホール、マンホール及びその他必要箇所では、ケーブルにプラスチック製等の名 札を取付け、回路種別、行先などの表示を行わなければならない。
- (5) ケーブル埋設標を設ける場合は、表示矢印を赤色にしなければならない。
- (6) ケーブルの敷設は、予め定めた方向にて行い、接続点において色別及び相回転が一致するようにさせなければならない。
- (7) 高圧地中電線路が15mを超える場合にあっては、所定の埋設標示を、埋設深さ0.3mの位置で2m間隔に敷設しなければならない。

5.5.10 掘削及び埋戻し

地中電線路の埋設に係わる掘削及び埋戻しは、3.3.3に準じて行うほか、次の各号によって 行わなければならない。

- (1) 掘削幅は、管の敷設作業が可能な範囲で最小幅とする。
- (2) 舗装の切取りは、カッター等にて行い、周辺に損傷が生じないようにしなければならない。
- (3) 掘削は所定の深さまで行い、石や突起物を取り除き、床ならしを行うものとする。
- (4) 埋戻しは、1層の仕上がり厚さが0.3m以下となるように均一に締め固めて順次行うものとする。
- (5) 掘削土を埋め戻す場合は、下層土は下層に、上層土は上層に埋め戻すものとする。
- (6) 掘削、埋戻しは、地中埋設物に損傷を与えないように十分注意して行わなければならない。
- (7) 路面の表面仕上げを行う場合は、掘削前の路面高さと同じにし、十分締固め、原則として同一の材料を使用して行わなければならない。

第6節 トンネル内電線路工事

5.6.1 電 線

トンネル内電線路に使用する電線は、低圧にあっては、ビニル絶縁電線又はケーブル、高圧 にあっては、ケーブルとする。

5.6.2 トンネル内電線路

トンネル内電線路工事は、次の各号によって行わなければならない。

- (1)金属管工事によるトンネル内電線路は、第4章 第3節 金属管配線工事に準じて行わなければならない。
- (2) 合成樹脂管工事によるトンネル内電線路は、第4章 第4節 合成樹脂管配線工事に準じて行わなければならない。
- (3) 可とう電線管工事によるトンネル内電線路は、第4章 第5節 可とう電線管配線工事に準じて行わなければならない。
- (4) 金属ダクト工事によるトンネル内電線路は、第4章 第11節 金属ダクト配線工事に準じて行わなければならない。
- (5) ケーブル工事によるトンネル内電線路は、第4章 第13節~第15節に準じて行わなければならない。
- (6) ケーブルラック工事によるトンネル内電線路は、第4章 第16節 ケーブルラック配線工事に準じて行わなければならない。

5.6.3 管路などの敷設

- 1 管路等を露出して敷設する場合は、道路の建築限界を確保するとともに、他の施設物等と の離隔をとるものとする。
- 2 トレンチ内にケーブルを敷設する場合は、0.6m毎に結束し、支持しなければならない。また同一トレンチ内に各種のケーブルが収容されている場合は、用途に適応した断面配置としなければならない。

5.6.4 防災設備へのトンネル内電線路

トンネル内に設置した防災設備への電線路は、4.1.11に準じて行わなければならない。

第6章 接 地 工 事

第6章接地工事

第1節一般事項

6.1.1 一 般

接地工事の種別は、次の各号に示すものとする。

- (1) A種接地工事
- (2) B種接地工事
- (3) C種接地工事
- (4) D種接地工事

6.1.2 A種接地工事を施す電気工作物

A種接地工事は、次の各号に示す電気工作物に行うものとする。

- (1) 高圧及び特別高圧用電気機器の鉄台並びに金属製外箱。ただし、高圧用電気機器で人が 触れるおそれがないように木柱、コンクリート柱その他これに類するものの上に設置する 場合又は鉄台若しくは外箱の周囲に適当な絶縁台を設けた場合は、省略することができる。
- (2) 特別高圧計器用変成器の2次側電路
- (3) 高圧及び特別高圧計器用変成器の鉄心。ただし、外箱のない計器用変成器がゴム、合成 樹脂などの絶縁物で被覆されたものは、この限りでない。
- (4) 高圧及び特別高圧の電路に設置する避雷器及び放出筒その他避雷器に代わる装置
- (5) 特別高圧電路と高圧電路とを結合する変圧器の高圧側に設ける放電装置
- (6) 高圧ケーブルを収める金属管、防護装置の金属製部分、ケーブルラック、金属製接続箱 及びケーブルの被覆に使用する金属体。ただし、地中等で人が触れるおそれがないように 設置する場合は、D種接地工事とすることができる。

6.1.3 B種接地工事を施す電気工作物

B種接地工事は、次の各号に示す電気工作物に行うものとする。

- (1) 高圧電路と低圧電路とを結合する変圧器の低圧側中性点。ただし、低圧電路の使用電圧 が300V以下の場合において変圧器の構造又は配電方式により変圧器の中性点に施工しがた い場合は、低圧側の一端子とすることができる。
- (2) 高圧及び特別高圧と低圧電路とを結合する変圧器であって、その高圧又は特別高圧巻線と低圧巻線との間の金属製混触防止板
- (3) 特別高圧電路と低圧電路とを結合する変圧器の低圧側の中性点(接地抵抗10Ω以下)。 ただし、低圧電路の使用電圧が300V以下の場合においては、(1)によるものとする。

6.1.4 C種接地工事を施す電気工作物

C種接地工事は、次の各号に示す電気工作物に行うものとする。

(1) 300Vを超える低圧計器用変成器の鉄台及び金属製外箱。

- (2) 300Vを超える低圧計器用変成器の鉄心。ただし、外箱のない計器用変成器がゴム、合成 樹脂等の絶縁物で被覆されたものはこの限りでない。
- (3) 300Vを超える低圧用の避雷器
- (4) 300Vを超える低圧ケーブル配線による電線路のケーブルを収める金属管、ケーブルの防護装置の金属製部分、ケーブルラック、金属製接続箱、ケーブルの金属被覆等
- (5) 合成樹脂管配線による300Vを超える低圧屋内配線に使用する金属製プルボックス及び 粉じん防爆形フレクシブルフィッチング
- (6) 金属管配線、可とう電線管配線、金属ダクト配線、バスダクト配線による300Vを超える 低圧屋内配線の管、ダクト
- (7) 低圧屋内配線と弱電流電線を堅ろうな隔壁を設けて収める場合の電線保護物の金属製部分
- (8) ガス蒸気危険場所及び粉じん危険場所内の低圧の電気機器の外箱、鉄わく、照明器具、 可搬形機器、キャビネット、金属管とその付属品等露出した金属製部分

6.1.5 D種接地工事を施す電気工作物

D種接地工事は、次の各号に示す電気工作物に行うものとする。

- (1) 高圧地中線路に接続する金属製外箱
- (2) 300V以下の電気機器の鉄台及び金属製外箱
- (3) 300V以下の計器用変成器の鉄心。ただし、外箱のない計器用変成器がゴム、合成樹脂等の絶縁物で被覆したものはこの限りでない。
- (4) 300V以下の避雷器
- (5) 低圧又は高圧架空配線にケーブルを使用し、これをちょう架する場合のちょう架用線及 びケーブルの被覆に使用する金属体
- (6) 地中配線を収める金属製の暗きょ、管及び管路(地上立上り部を含む)、金属製の配線接続箱、地中配線の金属被覆等
- (7) 300Vを超える低圧又は高圧計器用変成器の2次側電路
- (8) 300V以下の低圧の合成樹脂管配線に使用する金属製プルボックス及び粉じん防爆形フレクシブルフィッチング
- (9) 300V以下の低圧の金属管配線、可とう電線管配線、金属ダクト配線、バスダクト配線、 フロアダクト配線、金属線び配線に使用する管、ダクト、線び及びその付属品、300V以下 のケーブル配線に使用するケーブル防護装置の金属製部分、金属製接続箱、ケーブルラッ ク、ケーブルの金属被覆等
- (10) 変電設備の金属製支持管等
- (11) 屋外照明器具の金属製部分

6.1.6 D種又はC種接地工事の特例

D種接地工事又はC種接地工事を施さなければならない金属体が、次のいずれかに適合する 場合は、当該接地工事を施したものとする。

- (1) D種接地工事を施さなければならない金属体と大地との間が電気的及び機械的に確実 に接続され、その間の電気抵抗値が100Ω以下である場合
- (2) C種接地工事を施さなければならない金属体と大地との間が電気的及び機械的に確実 に接続され、その間の電気抵抗値が10 Ω以下である場合

6.1.7 D種接地工事の特例

D種接地工事を施す電気工作物のうち、次のものは接地工事を省略できるものとする。

- (1) 直流300V又は交流対地電圧150V以下で人が容易に触れるおそれのない場所又は乾燥した場所で次に示すような場合
 - イ 長さ8m以下の金属管及び金属線ぴを敷設する場合
 - ロ 合成樹脂管配線の金属製プルボックス及び粉じん防爆形フレクシブルフィッチング
 - ハ ケーブル防護装置の金属製部分及びケーブルラックの長さが8m以下の場合
- (2) 300V以下で次の場合
 - イ 4m以下の金属管を乾燥した場所に敷設する場合
 - ロ 4m以下の金属製可とう電線管及び金属線びを敷設する場合
 - ハ ケーブルの防護装置の金属製部分及びケーブルラックの長さが4m以下のものを乾燥した場所に敷設する場合
- (3) 直流300V又は交流対地電圧150V以下の機器を乾燥した場所に設置する場合
- (4) 低圧架空電線にケーブルを使用し、これをちょう架する場合、ちょう架用線に絶縁電線 又はこれと同等以上の絶縁効力のあるものを使用した場合

6.1.8 C種接地工事をD種接地工事にする条件

C種接地工事を施す電気工作物のうち、使用電圧が300Vを超える場合で人が触れるおそれのないよう敷設する次のものは、D種接地工事とすることができるものとする。

- (1) 金属管配線に使用する管
- (2) 合成樹脂管配線に使用する金属製プルボックス
- (3) 可とう電線管配線に使用する可とう管
- (4) 金属ダクト配線に使用するダクト
- (5) バスダクト配線に使用するダクト
- (6) ケーブル配線に使用する管その他の防護装置の金属製部分、ケーブルラック、金属製接 続箱及びケーブル被覆に使用する金属体

6.1.9 照明器具の接地

照明器具には、次により接地工事を施すものとする。

- (1) 管灯回路が高圧で、かつ、放電灯用変圧器の2次短絡電流又は管灯回路の動作電流が1A を超える放電灯用安定器の外箱及び放電灯器具の金属製部分には、A種接地工事
- (2) 管灯回路が300Vを超える低圧で、かつ、放電灯用変圧器の2次短絡電流又は管灯回路の 動作電流が1Aを超える放電灯用安定器の外箱及び放電灯器具の金属製部分には、C種接地 工事
- (3) 次の照明器具の金属製部分及び安定器別置の場合の安定器外箱にはD種接地工事。ただし、二重絶縁構造のもの及び管灯回路が対地電圧150V以下で乾燥した場所に敷設する放電灯は除く。
 - イ 40W以上の蛍光ランプを用いる照明器具
 - ロ ラピッドスタート形蛍光灯器具
 - ハ Hf蛍光灯器具
 - ニ 32W以上のコンパクト蛍光灯ランプを用いる照明器具
 - ホ HID等の放電灯器具
 - へ 対地電圧が150Vを超える放電灯以外の照明器具
 - ト 防水形器具及び湿気、水気のある場所で人が容易に触れるおそれのある場所に取付ける器具。ただし、外わくが合成樹脂等耐水性のある絶縁物製のものは除く。

第2節接地線

6.2.1 一 般

接地線は、緑色のビニル電線を使用するものとする。

6.2.2 A種接地工事の接地線の太さ

A種接地工事の接地線の太さは、次の各号によるものとする。

- (1) 接地母線及び避雷器の接地線の太さは、14mm2以上とする。
- (2) その他の場合の接地線の太さは、5.5mm2以上とする。

6.2.3 B種接地工事の接地線の太さ

B種接地工事の接地線の太さは表6.2.1によるものとする。

表6.2.1 B種接地工事の接地線の太さ

変圧器一相分の容量			接地線	の太さ
100V級	200V級	400V級 500V級	銅	アルミ

5kVA	まで	10kVA	以下	20kVA	以下	2.6mm	以上	3.2mm	以上
10kVA]]	20kVA]]	40kVA]]	3.2mm]]	$14\mathrm{mm}^{\;2}$]]
20kVA	"	40kVA	"	75kVA	"	$14\mathrm{mm}^{2}$	"	$22\mathrm{mm}^{\;2}$	"
40kVA	"	75kVA	"	150kVA	"	$22\mathrm{mm}^{2}$	"	$38\mathrm{mm}^{2}$	"
60kVA	"	125kVA	Ŋ	250kVA	"	$38\mathrm{mm}^{2}$	"	$60 \mathrm{mm}^{2}$	"
75kVA	"	150kVA	"	300kVA	"	$60 \mathrm{mm}^{2}$	"	$80 \mathrm{mm}^{\; 2}$	"
100kVA	"	200kVA	"	400kVA	"	$60 \mathrm{mm}^{2}$	"	$100 \mathrm{mm}^{2}$	"
175kVA	"	350kVA	"	700kVA	"	$100\mathrm{mm}^{2}$	"	$125\mathrm{mm}^{2}$	"

[備考1]この表の算定の基礎については、内線規程 資料1-3-6参照のこと。

[備考2]「変圧器一相分の容量」とは次の値をいう。

- (1) 三相変圧器の場合は、定格容量の1/3の容量をいう。
- (2) 単相変圧器同容量の△結線又はΥ結線の場合は、単相変圧器の一台分の定格容量をいう。
- (3) 単相変圧器同容量の V 結線の場合
 - イ 同容量のV結線の場合は、単相変圧器の一台分の定格容量をいう。
 - ロ 異容量のV結線の場合は大きい容量の単相変圧器の定格容量をいう。

[備考3]低圧側が一つの遮断器で保護される変圧器が2バンク以上の場合の「変圧器一相分の容量」は、各変圧器に対する[備考2]の容量の合計値とする。

[備考4]低圧側が多線式の場合は、その最大使用電圧で通用すること。例えば単相3線式100/200V の場合は、200V級を通用する。

6.2.4 C種接地工事及びD種接地工事の接地線の太さ

C種接地工事及びD種接地工事の接地線の太さは、表6.2.2によるものとする。なお、表6.2.2に該当しないものの場合は、2.0mm 2以上とする。

表6.2.2 C種及びD種接地工事の接地線の太さ

低圧電動機	幾及びその	その他のものの	
金属管な	どの接地	接地(配線用遮断	接地線の太さ
200V級	400V級	器などの定格電	1女地がり入る
電動機	電動機	流)	
		20A以下	2 mm ² 以上
2.2kW以下	3.5kW以下	30A "	$2 \text{ mm}^2 \prime \prime$
3.7kW "	7.5kW "	50A "	3.5mm^2 "
7.5kW "	15 kW "	100A "	5.5 mm^2 "
22 kW "	45 kW "	150A "	8 mm ² "
30 kW "	55 kW "	200A "	14 mm^2 "
37 kW "	75 kW "	250A "	22 mm^2 "
_	_	400A "	22 mm ² "
_	_	600A "	38 mm² "
_	_	800A "	60 mm ² "
_	_	1000A "	60 mm ² "
_	_	1200A "	100 mm ² "

[備考] 電動機の定格出力が上表を超過するときは、配線用遮断機等の定格電流に基づいて接 地線の太さを選定する。

第3節施工

6.3.1 A種接地工事及びB種接地工事の施工

A種接地工事及びB種接地工事は、次の各号により行うものとする。

- (1) 接地極は、なるべく湿気の多い場所でガス、酸などによる腐食のおそれのない場所を選び、接地極の上端を地下0.75m以上の深さに埋設しなければならない。
- (2)接地線と接地する目的物及び接地極との接続工事は、電気的及び機械的

に堅ろうに施工しなければならない。

- (3) 接地線は、地下0.75mから地表上2mまでの部分を合成樹脂管又はこれと同等以上の絶縁 効力及び強さのあるもので覆う。
- (4) 接地線は、接地すべき機器から0.3m以下の部分及び地中横走り部分を除き、必要に応じ 管等に収めて損傷を防止する。
- (5) 接地線を人が触れるおそれのある場所で鉄柱のような金属体に沿って敷設する場合は、 接地極を地中でその金属体から1m以上離して埋設しなければならない。
- (6) 避雷針用引下導線を施設してある支持物には、接地線を敷設してはならない。

6.3.2 C種接地工事及びD種接地工事の施工

C種接地工事及びD種接地工事は、前項(1)、(2)及び(4)から(6)までの規定によるものとする。また、接地線の使用においては、電気的に接続されている金属管をこれに代えることができるものとする。

6.3.3 施工詳細

接地工事の施工詳細は、次の各号によるものとする。

- (1) 高圧ケーブル及び制御ケーブルの金属遮へい体は、電源側の1箇所で接地するものとする。
- (2) 計器用変成器の2次回路は原則として配電盤側接地とする。
- (3) 接地端子箱内の接地線には、プラスチック製、ファイバ製等の名札を取付け、接地種別、行先等を表示する。
- (4) 接地導線と被接地工作物及び接地線相互の接続は、はんだ上げ接続をしてはならない。
- (5) 接地線を保護する場合の保護管は、原則として避雷器用接地線には黄銅管又は合成樹脂管とし、一般用接地線には合成樹脂管又は金属管とする。
- (6) 接地線を引き込む場合は、水が屋内に侵入しないように施工しなければならない。

6.3.4 各種接地と避雷設備及び避雷器の接地との離隔

各種接地工事における接地極及びその裸導線の地中部分は、原則として避雷設備及び避雷器の接地極並びに裸導線の地中部分とは2m以上離さなければならない。

6.3.5 接地極位置の表示

接地極の埋設位置には、その近くの適当な箇所に接地極埋設標を設け、接地種別、接地極の 埋設位置、深さ及び埋設年月を明示するものとする。ただし、電柱及び屋外灯等の柱位置の場 合並びにマンホール及びハンドホールの場合は、接地極埋設標を省略してもよい。

6.3.6 接地極

接地極の埋設は、次の各号によって行わなければならない。

- (1) 埋設又は打込み接地極としては、銅板、銅棒、鉄管、鉄棒、銅覆鋼板、炭素被覆銅棒などを使用し、なるべく水気のある所で、かつガス、酸等で腐食するおそれがない場所を選び、地中に埋設又は打込みしなければならない。
- (2) 前号の接地極は、次の各号のものを原則とする。
 - イ 銅板を使用する場合は、厚さ0.7mm以上、大きさ900cm2(片面)以上のものであること。
 - ロ 銅棒、銅溶覆鋼棒を使用する場合は、直径8mm以上、長さ0.9m以上のものであること。
 - ハ 鉄管を使用する場合は、外径25mm以上、長さ0.9m以上の亜鉛めっきガス鉄管又は厚鋼電線管であること。
 - ニ 鉄棒を使用する場合は、直径12mm以上、長さ0.9m以上の亜鉛めっきを施したものであること。
 - ホ 銅覆鋼板を使用する場合は、厚さ1.6mm以上、長さ0.9m以上、面積0.025m2 (片面) 以上のものであること。
 - へ 炭素被覆銅棒を使用する場合は、直径8mm以上の銅心で長さが0.9m以上のものであること。

第7章 受変電設備工事

第7章 受変電設備工事

第1節 一般 事項

7.1.1 適用範囲

- 1 この章は、受変電設備据付工事、遠方監視制御装置据付工事、中央処理装置据付工事、直 流電源装置据付工事、自家発電設備据付工事(以下「受変電設備据付工事等」という。)に 適用する。
- 2 受変電設備据付工事等で主要機材を製作する場合は、製作工場での製作工程、品質管理、 検査等についても適用範囲とする。

7.1.2 使用機材

- 1 受変電設備据付工事等における使用機材は、第2章 機器及び材料の規定によるものとする。
- 2 受変電設備据付工事等で主要機材を製作する機器製造者は、あらかじめ機器仕様書及び製作図面を作成し、主任監督員の承諾を受けなければならない。

7.1.3 保安検査

- 1 受変電設備据付工事等において、自家用電気工作物に係わる保安検査が必要な場合は、次 の各号の資料等について、監督職員の指示に基づく資料を必要部数作成し、提出しなければ ならない。
 - (1) 自家用電気工作物の新設又は変更工事に係わる工事概要書
 - (2) 自家用電気工作物の保安検査の対象項目に係わる社内製品検査成績書
 - (3) 保安検査事前データ対象項目に係わる測定試験記録
 - (4) 保安検査実施計画書
- 2 保安検査資料の作成にあっては、監督職員の指示に基づき、関連工事の受注者と協力して 行い、資料の重複及び欠落が生じないようにしなければならない。

第 2 節 受変電設備据付工事

7.2.1 配電盤搬入据付工事

- 1 配電盤の据付けは、次の各号によって行わなければならない。
 - (1) 配電盤は、扉の開閉、計器の観測、盤内外部点検及び機器の取出し作業等が安全に行えるような場所に据付けなければならない。
 - (2) 配電盤は、地震時の水平移動、転倒等を防止するための耐震措置を講じなければならない。
 - (3) 配電盤は、ベース用溝形鋼をすみ出しした位置に据付け、溝形鋼の上面が水平になるようにライナーモルタル等で調整した後で、基礎ボルトにより床面に固定する。
 - (4) 配電盤は、配電盤相互をすき間なく連結後水平になるよう調整する。

- (5) 屋外形配電盤は、浸水に注意し、配電盤の重量を安全に支持できる基礎の上に設置する。
- (6) 配電盤据付け後、配線用ピットとのすき間を閉そくし、防蛇、防鼠処理を十分に施さなければならない。
- 2 配電盤を屋外に据付ける場合は、フェンスを設置し、その出入口には施錠装置を設けるものとする。
- 3 電気設備に係わる必要な注意標識は、条例等の規定により設置するものとする。
- 4 配電盤の吊りボルト等は、必要に応じて取り外し所定の場所に保管するものとする。

7.2.2 配 線

- 1 電気機器への配線は、次の各号によって行わなければならない。
 - (1) 高圧機器及び電線は、人が容易に触れるおそれがないように設置しなければならない。 なお、取扱者以外の者が出入りできないような場所に設置した場合でも、裸導線を使用する ときは、しゃへい板等を設けることにより、取扱者が容易に触れるおそれがないように処 置を講じなければならない。
 - (2) 変圧器、交流遮断器、高圧進相コンデンサの端子等の充電部露出部分には保護板、保護 筒、絶縁キャップ等を設けなければならない。
 - (3) 変圧器と銅帯との接続には、可とう導体を使用するか又は電線に可とう性を有するように接続する。
 - (4) 機器端子等への接続は、4.1.19に準じて行うものとする。
 - (5) 配電盤の外部回路接続箇所では、移動電線及び予備回路の配線のため、必要な配線作業スペースを確保しておかなければならない。
 - (6) 配線色分けは、盤正面からみた方向にて揃えるものとする。
- 2 ケーブルによる配線は、第4章 第13節 ケーブル配線工事及び第4章 第15節 高圧ケーブル 配線工事による他、次の各号によって行わなければならない。
 - (1) ケーブルをピット内に敷設する場合は、行先系統別に整然と配列して行わなければならない。
 - (2) 配電盤から制御回路等への接続においては、所定のコネクタ等を用いて行わなければならない。
- 3 金属管配線工事、合成樹脂管配線工事、金属ダクト配線工事、ケーブルラック配線工事等は、第4章 屋内配線工事によるものとする。
- 4 電線のコンクリートなどの貫通箇所は、4.1.12及び4.1.13による他、湿気、じんあい等が 侵入し難いよう適当な方法で閉そくしておかなければならない。

7.2.3 調整

1 配電盤の搬入据付工事において生じた盤等の傷、汚損箇所は、配線工事終了後に補修塗装 及び清掃を行い補修しておかなければならない。

- 2 機器の配線接続端子は、ボルトのゆるみ、はずれ等を点検し、締付け調整を行わなければ ならない。
- 3 盤内に収容した変圧器は、その場所に適合したタップ調整を行い、所定の箇所に明示して おかなければならない。

7.2.4 接 地

接地は、第6章 接地工事に準じて行わなければならない。

第 3 節 遠方監視制御装置据付工事

7.3.1 装置搬入据付工事

- 1 装置の据付けは7.2.1の1による他、フリーアクセス床に固定する場合は、装置部分の床を切り取り、コンクリート床に山形鋼等で専用架台を設け、ボルトで固定しなければならない。
- 2 装置を固定する場合、他の機器等と絶縁する必要のあるときは、木台又は絶縁シート等に より絶縁処理を施さなければならない。

7.3.2 配 線

- 1 遠方監視制御装置への配線は、次の各号によって行わなければならない。
 - (1) 中央処理装置への配線は、所定の計装ケーブル等を使い、必要に応じて誘導防止処理を施さなければならない。
 - (2) 遠方監視制御装置への接続は、端子又は、ケーブルに適合したコネクタを使用して行わなければならない。
 - (3) 平衡ケーブルを使用する場合は、対向配線とする。
- 2 ケーブルをピット内又はフリーアクセス床内に敷設する場合は、行先系統別に整然と配列 しなければならない。

7.3.3 接 地

接地は、第6章 接地工事に準じて行わなければならない。

第 4 節 中央処理装置据付工事

7.4.1 装置搬入据付工事

装置の据付けは、7.2.1の1及び7.3.1によって行わなければならない。

7.4.2 配 線

配線は、7.2.2及び7.3.2によって行わなければならない。

7.4.3 接 地

接地は、第6章 接地工事に準じて行わなければならない。

第 5 節 直流電源装置据付工事

7.5.1 装置搬入据付工事

装置の据付けは、7.2.1によって行わなければならない。

7.5.2 蓄電池据付工事

蓄電池の据付けは、キュービクル内に収容するか、又は専用の蓄電池架台を設けて設置し、次の各号によって行わなければならない。

- (1) 地震時の水平移動、転倒等を防止するための耐震措置を講じなければならない。
- (2) 架台は、部材の水平、垂直を確実に調整し、ボルト類で締付けを十分に行わなければならない。
- (3) 注意標識等は条例により設ける。

7.5.3 配 線

配線は、 $7.2.2010(4) \sim (6)$ 号及び $2\sim 4$ に準じて行わなければならない。

7.5.4 接 地

接地は、第6章 接地工事に準じて行わなければならない。

第 6 節 自家発電設備据付工事

7.6.1 耐震措置

自家発電設備は、地震時の水平移動、転倒等を防止するための耐震機構を有するものでなければならない。

7.6.2 基 礎

基礎の形状、寸法及び強度は、自家発電設備に適合したものとし、次の各号によらなければならない。

- (1) 機器の荷重に対し十分な強度及び受圧面を有するものとし、支持力のある床又は地盤面に築造する。
- (2) 基礎部の表面は、モルタル仕上げとし、据付面は水平に仕上げなければならない。
- (3) 機器の据付け面には、機器に適合する基礎ボルトを設ける。

なお、基礎ボルトは、地震の水平力に対して耐えられるような十分な強度のものでなけれ ばならない。

7.6.3 発電機及び原動機の据付け

発電機及び原動機の据付けは、次の各号によって行わなければならない。

(1) コンクリート基礎上に、水平、中心線などの関係位置を正確に計測し、共通台板を据付けて組み立てる。

なお、必要に応じて、共通台板に制振用ストッパーを設ける。

- (2) 発電機、原動機の水平、中心線、入出力軸部のたわみなどについての適時補正を行う。
- (3) 据付け完了後、ラジエータ等の各補機類を設置し、軸心などの調整を行い、共通台板の 水平を確認してから基礎ボルトにより堅固に固定する。
- (4) 発電機、原動機の内部に、水分、じんあい、切粉等の有害物の侵入がないように組み立てる。
- (5) 発電機及び原動機は、防鼠措置を行う。

7.6.4 配電盤の据付け

配電盤の据付けは、7.2.1の1項に準じて行わなければならない。

7.6.5 空気圧縮機の据付け

空気圧縮機は、コンクリート基礎上に水平に据付けて、ボルトで固定しなければならない。

7.6.6 空気槽の据付け

空気槽の据付けは、次の各号によって行わなければならない。

- (1) 空気槽の主そく止弁が操作しやすい位置となるように、基礎又はコンクリート床に設置する。
- (2) 空気槽と空気槽との間に木製などの枕をはさみ、鋼製のバンドで空気槽を抱合せとする。

7.6.7 燃料小出槽の据付け

燃料小出槽の据付けは、次の各号によって行わなければならない。

- (1) 架台は、ボルトなどを用いて堅固に壁又は床に固定する。
- (2) 燃料小出槽下部には、十分な容積を有する防油堤及び油だまりを設けなければならない。
- (3) 通気管の屋外配管の先端は、地上4m以上の高さとし、建物の窓、出入口などから1m以上離隔する。

7.6.8 主燃料槽の据付け

主燃料槽の据付けは、次の各号によって行わなければならない。

- (1) 主燃料槽の据付工事は、「危険物の規制に関する政令」及び同規則の定めるところによって施工しなければならない。
- (2) 通気管は、7.6.7の(3)に準じるものとする。

7.6.9 減圧水槽の据付け

減圧水槽用据付け架台は、ボルトなどを用いて堅固に壁又は床に固定させなければならない。

7.6.10 冷却塔の据付け

冷却塔の据付けは、次の各号によって行わなければならない。

(1) 冷却塔は、鉄筋コンクリート製又は形鋼製架台上に自重、積雪、風圧、地震その他の振動に対し安全に設置する。

なお、建物の屋上に設ける冷却塔は、建築基準法施行令第129条の2の4及び同法施行令に基づく告示の定めるところにより据付けなければならない。

(2) 冷却塔まわりの配管は、その重量が直接本体にかからぬように支持しなければならない。

7.6.11 補機付属装置の配管一般

補機付属装置の配管は、次の各号によって行わなければならない。

- (1) 原動機本体と付属機器間を連結する燃料油、冷却水、始動空気などの各系統の配管は、接続完了後それぞれの耐圧試験に合格し、水漏れ、油漏れ、空気漏れなど生じないように充分注意して施工しなければならない。
- (2) 配管は、発電機及び原動機の運転に伴う振動、温度上昇、地震入力等に対し十分に耐えるものとする。
- (3) 防露被覆又は保温被覆を行わない配管で、天井、床、壁などを貫通する見えがかり部分には、管座金を取付ける。
- (4) ピット内配管は、次によって行わなければならない。
 - イ 配管支持金物は、排水などに支障のないようにピット側壁又は底に固定し、燃料油、 冷却水、始動空気などの各管を系統別に順序よく配列し、取り付ける。
 - ロ 管は、なるべく交錯しないよう配管する。
 - ハ ピット内より各機器に立上げる場合は、その要所にフランジなど、取外し可能なもの を設けて鉛直に立上げる。
- (5) 管は、すべてその断面が変形しないよう管軸心に対して直角に切断し、その切口は平滑に仕上げる。
- なお、管は、接合する前にその内部を点検し、異物のないことを確かめ、切りくず、ごみなどを除去してから接合する。
- (6) 耐油性ゴム及びファイバのパッキンは、燃料油及び潤滑油に用いる銅管のフランジに接着剤と併用してもよいものとする。
- (7) 配管の接続は、その配管に適したものとし、取外しの必要がある場合には、フランジ継手、フレア継手等を使用しなければならない。
- (8) 配管は、コーキング修理をしてはならない。
- (9) 管の最大支持間隔は、表7.6.1によるものとする。

なお、曲り部分及び分岐箇所は、必要に応じ支持する。

表7.6.1 管の最大支持間隔

呼び行	圣 (A)	20以下	25以上 40以下	50	65以上 80以下	90以上
間隔	鋼管	1.8	2. 0	3. 0	3.0	4.0
[m]	銅管	1.0	1. 5	2.0	2.5	_

- (10) 伸縮管継手を備えた配管には、その伸縮の起点として有効な箇所に固定金物を設けなければならない。
- (11) 原動機、ポンプ、槽等との接続点には、振動方向及び振幅を考慮して、可とう管継手 を設置しなければならない。
- (12) 配管には十分な防錆塗装を施し、露出部分は塗装により仕上げる。ただし、銅管については、防錆塗装を必要としない。
- (13) 配管の表面には、流体の種類及び方向を明示しなければならない。 なお、流体の種類により、配管に帯状の色別を表7.6.2によって行うものとする。

表7.6.2 配管の色別

種類	燃料油 配 管	冷却水 配 管	空 気 配 管	潤滑油 配 管
色	赤	青	白	黄

通気管が必要な場合は屋外まで配管する 温水及び蒸気管に保温処理

7.6.12 燃料系統配管

燃料系統の配管は、次の各号によって行わなければならない。

(1) 燃料油運搬用容器から直接屋内燃料小出槽へ給油する場合は、電動ポンプ又はウィング ポンプと容器との間に合成樹脂製ホース(ピアノ線入り又は網入り)を設け、その容器側 の先端は容器に適合した銅管を取付ける。

なお、先端は斜め切断又は凹形切込みを設ける。

- (2) 管の接合は、ピット内又は露出部分で行い、原則として溶接接合とする。 なお、やむを得ず埋設配管でねじ接合を行う場合は、継手部にコンクリート製の点検口ま すを設けなければならない。
- (3) ねじ接合及びフランジ接合には、それぞれ耐油性塗剤及び耐油性のパッキンを使用しなければならない。
- (4) 配管用ピット又はコンクリート床より原動機及び屋内燃料小出槽等の機器への立上げ 又は引下げ管は、各機器の操作保守作業に支障をきたすことのないよう当該機器に沿わせ るか又は側面に平行に配管する。
- (5) 原動機及び燃料小出槽への接続には、金属製可とう管継手又はこれと同等以上の継手を 使用して行わなければならない。

なお、可とう管継手の長さは、表7.6.3に示す値とする。

表7.6.3 燃料油配管の可とう管継手の長さ

呼び径 (A)	長き
25未満	300mm以上
25以上50未満	500 "
50以上100未満	800 "

(6) 土中埋設鋼管は、平成2年自治省告示第204号「危険物の規制に関する技術上の基準の細目を定める告示」に規定する塗覆装又はコーティングを行う。ただし、塗覆装の方法は、JIS G 3491(水道用鋼管アスファルト塗覆装方法)又はJIS G 3492(水道用鋼管コールタールエナメル塗覆装方法)による1回塗1回巻(二重巻)、覆装材は、ヘッシャンクロスとする。なお、埋設深さは、一般敷地で0.3m以上、重車両道路で1.0m以上とする。

7.6.13 冷却水系統配管

冷却水系統の配管は、次の各号によって行わなければならない。

(1) 主配管には、適当な箇所にフランジ継手を挿入し、設置後での配管引替作業が容易に行えるように処置しておかなければならない。

なお、呼び径25A以下の見えがかり配管には、コニカル形ユニオンを使用してもよいものと する。

- (2) 配管中に生ずる空気だまりには、空気抜き弁を設けなければならない。
- (3) 冷却水槽の吸込管は、その端末にストレーナ及びフート弁を設け、配管ピットを経由して原動機冷却水ポンプ入口に接続する。

なお、管の水槽内引下げ深度は、底から0.2m程度とする。

- (4) 冷却水槽の還水管は、原動機出口より水槽まで配管し、水が水槽内に放散しうるようにしておかなければならない。
- (5) ラジエータ冷却方式を除き、配管の途中には流水を検知する装置を設けなければならない。
- (6) 水ジャケット及び冷却水管の最下部には、原則として、ドレンコックを設けなければな らない。
- (7) 原動機、減圧水槽若しくは初期給水槽及び冷却塔への接続には、可とう管継手を使用しなければならない。

なお、可とう管継手の長さは表7.6.4に示す値とする。

表7.6.4 冷却水配管の可とう管継手の長さ

呼び径(A)	長 さ
25以下	300mm以上
32以上50以下	500 <i>"</i>
65以上150〃	750 <i>"</i>

7.6.14 始動空気系統配管

始動空気系統の配管は、次の各号によって行わなければならない。

- (1) 圧力鋼管又は銅管の接続は完全に行い、空気漏れがないようにしなければならない。
- (2) ディーゼル機関への接続には可とう管継手を使用する。ただし、外径の小さい銅管は、可とう管継手に代えてリング状のものとして、可とう性をもたせたものとしてもよい。

7.6.15 排気系統配管

排気系統の配管は、次の各号によって行わなければならない。

(1) 排気管の配管は、原動機出口に排気可とう管などを介して接続し、消音器などを介して排気する。

なお、排気系統の配管は、原則として天井配管とする。

- (2) ディーゼル機関の排気管及び消音器の支持金物は、振動の伝播を防止し、地震入力に十分耐えうる防振つり金物、防振支持金物を使用して支持しなければならない。
- (3) 排気系統配管は、運転時の熱膨張などを考慮した配管を行い、ストッパと消音器及び排気管との間隔は、できるだけ小さくする。
- (4) 排気管は、次に示す方法で断熱処理しなければならない。
 - イ 断熱材は、ロックウールなどを使用し、その厚さは特記とする。
 - ロ 断熱材は、鉄線で固定し、亜鉛めっき鋼板又は塗装溶融亜鉛めっき鋼板で巻き上げる。
 - ハ 伸縮継手部分及びフランジ部分は、ロックウール等により周囲を覆い鉄線で縫い合わせる。
- (5) 消音器は、前号又はこれと同等以上の方法で断熱処理を行う。
- 造営材を貫通又は造営材に近接する配管の断熱は、入念に行い、火災防止に万全を期したものとしなければならない。
- (6) 排気管先端には防鳥網を設ける。

7.6.16 配 線

配線は、7.2.2による他、次の各号によって行わなければならない。

- (1) 配線は、原動機から発生する熱の影響を受けないように高温部から5cm以上離隔して敷設しなければならない。ただし、水温検出スイッチなど5cm以上離隔することが困難な場合にあっては、耐熱ビニル電線又は同等以上の耐熱性のある電線を使用して敷設するものとする。
- (2) 充電部は、容易に触れることができないように覆いなどを設けて防護措置を講じなければならない。

7.6.17 接 地

接地は、第6章 接地工事に準じて行わなければならない。

第8章 道路·建物電気設備工事

第8章 道路•建物電気設備工事

第1節 一般 事項

8.1.1 適用範囲

- 1 この章は、道路電気設備工事及び建物電気設備工事に適用する。
- 2 道路電気設備とは、首都高速道路に設置される道路付属施設及び道路安全施設としての道 路照明設備、道路標識設備、避難通路電灯設備をいう。

8.1.2 工事の種類

道路電気設備及び建物電気設備に係わる工事の種類は、下記に示すものとする。

- (1) 道路電気設備工事の種類は、下記に示すものとする。
 - イ 道路照明設備工事
 - 口 道路標識設備工事
 - ハ 避難通路電灯設備工事
- (2) 建物電気設備工事の種類は、下記に示すものとする。
 - イ 建物電灯設備工事
 - 口 建物動力用配線工事
 - ハ 建物避雷設備工事

第 2 節 道路照明設備工事

8.2.1 一 般

道路照明設備工事は、道路照明設備、トンネル照明設備及び照明用配線設備に係わる工事、低 圧屋内配線工事及び次の各号によって行わなければならない。

- (1) 電圧降下及び電圧降下率は、4.1.1に準じたものとする。
- (2) 電線の許容電流は、4.1.2に準じたものとする。
- (3) 照明用配線工事は、金属管配線工事、合成樹脂管配線工事、可とう電線管配線工事、ケーブル配線工事、キャブタイヤケーブル配線工事、ケーブルラック配線工事としなければならない。

なお、トンネル照明設備の配線は、第5章 第6節 トンネル内電線路工事に準じた工事に よって行うものとする。

(4) 使用電線は、原則として600Vビニル絶縁ビニルシースケーブル又は600V架橋ポリエチレン絶縁ビニルシースケーブルとする。

なお、調光回路は、制御用ビニル絶縁ビニルシースケーブルを使用する。

(5) 道路照明設備及びトンネル照明設備に使用する放電灯用安定器は、種別に応じて高力率 形又は定電力形のものとし、照明回路の電圧降下に対応した性能を有し、始動時及び再点 灯時の負荷電流が過大な値とならないものとする。

8.2.2 照明器具の取付け

- 1 道路照明器具(以下この節において「器具」という。)は、原則として放電灯を使用し、 その光源としては蛍光水銀ランプ、高圧ナトリウムランプ、蛍光ランプ、メタルハライドラ ンプ等を使用する。また、放電灯を設置する場合は、次の各号によって行わなければならな い。
 - (1) 管灯回路の使用電圧が1,000V以下の放電灯は、その充電部分が露出しないように処置し、 次によって危険のおそれのないように設置しなければならない。
 - イ メタルラス張り、ワイヤラス張り又は金属板張りの木造の造営物に放電灯を取付ける場合は、メタルラス、ワイヤラス又は金属板と放電灯用電灯器具の金属製部分とは電気的に接続しないように措置する。
 - ロ 湿気の多い場所又は水気のある場所に設置する放電灯には、適当な防湿装置を施さなければならない。
 - (2) 電灯回路の使用電圧が1,000Vを超える放電灯で、ネオン放電管以外のものを使用するものは、その充電部分が露出しないように処置し、かつ、前号アに準じた措置を講じ、次によって危険のおそれのないように設置しなければならない。
 - イ 放電管は金属製の堅ろうな器具に収め、かつ、器具と他の工作物(架空電線を除く。) 又は植物との離隔距離は0.6m以上とする。
 - ロ 放電灯には、適当な防水装置を施さなければならない。
- 2 器具の取付けは、次の各号によって行わなければならない。
 - (1) 器具は、直接又は取付金物、照明ポール等によって、設計図書により指示された箇所の 道路構造物に取付けなければならない。
 - (2) 器具を取付ける場合は、振動、風圧等によってゆるみ、蓋の開放等が生じないよう堅固 に取付けなければならない。

なお、高架道路に建柱した照明ポールに器具を取付ける場合にあっては、振動により蓋の開放が生じないような機構又は措置を講じなければならない。

- (3) 器具の取付位置、方向及び角度は、設置場所の道路形状並びに器具の配光特性に適合したものとしなければならない。
- (4) 複数の投光器を取付けて照明する場合は、それぞれの投光器の光軸を調整し、全体として均一な照明を確保させなければならない。
- (5) 器具取付金物は、溶融亜鉛めっき仕上げ又はステンレス製等防錆効果のある材質のもの とし、器具を取付ける場合においては、異種金属が直接接触し、電食が生じることがない ように処置しなければならない。

なお、器具及び器具取付金物をボルトにて取付ける場合、ナットの締めつけは所定の力で行い、過大の力を加えてナットやねじやまを破損しないように充分注意しなければならない。

3 トンネル内に器具を取付ける場合は、前項1及び2によるほか、次の各号によって行わなけ

ればならない。

- (1) 器具の取付位置、方向及び角度は、トンネル断面の形状、内装の種別・規模並びに器具の配光特性に適合したものとしなければならない。
- (2) トンネル内に器具を取付ける場合は、器具の取付位置及びその外形面が道路の建築限界を超えないよう充分に注意して行わなければならない。
- (3) 器具を連続して取付ける場合は、取付け面の凹凸によって器具の並びが不連続とならないように、取付金物等によって調整を図からなければならない。
- (4) トンネル入口部等で器具が集中して取付けられるような場合にあっては、事前に他の設備機器類との取り合いを調整し、器具取付けに支障が生じないようにしなければならない。

8.2.3 安定器の取付け

安定器の取付けは、次の各号によって行わなければならない。

- (1) 安定器は、照明ポール、器具又は安定器函内に適正な方法で取付ける。 なお、調光リレー内蔵型安定器を取付ける場合は、調光リレーの取り外しが容易に行える 取付け方法又は収容スペースを確保しなければならない。
- (2) 安定器函内に複数の安定器を収容する場合は、所定の間隔を確保し、函内の温度が過度 に上昇しないように処置しなければならない。
- (3) 安定器を収容する照明ポール、器具又は安定器函内は、配線用端子台、配線用遮断器、 内部配線を整然と配置し、必要に応じて配線用ボックスにこれらを収容し充電部が露出し ないように処置しなければならない。

8.2.4 自動点滅器の取付け

自動点滅器の取付けは、次の各号によって行わなければならない。

- (1) 自動点滅器を取付ける場合は、器具からの入射光によって作動すること がないような、位置及び方向としなければならない。
- (2) 天空輝度を観測し動作する自動点滅器は、その観測方向を北方天空とし、いかなる場合 にあっても、観測範囲内に太陽が存在することがないよう充分に注意して設置しなければ ならない。

8.2.5 照明ポールの設置

- 1 照明ポールの基礎(以下「基礎」という。)は、次の各号によるものとする。
 - (1) 掘削は、道路構造物、地下埋設物等に損傷を与えないよう充分注意して行わなければならない。
 - (2) 基礎は、照明ポール及び器具等を完全に支持し、有害な沈下、傾斜等を起こさないように設置する。

なお、埋立地等の軟弱地盤の場所では、直接基礎又は杭基礎等、地盤の状態に適合した

基礎構造のものとしなければならない。

- (3) 基礎コンクリートの下面は、切込砕石等を入れ、十分突き固めを行う。
- (4) アンカーボルトは、照明ポール及び器具の形状、寸法に基づく引張荷重に適合した強度 を有する、材質、径、長さのものとし、コンクリート埋込部分は、アンカーボルトに加わ る引張力に対して充分な付着力を有する長さのものとする。
- (5) アンカーボルトは、垂直に設置し、ベースプレート式照明ポールをスプリングワッシャ 付ダブルナットにて固定する。

なお、縦断勾配が大きな場所にアンカーボルトを設置する場合は、露出部分の長さが短い側にあっても、スプリングワッシャ付ダブルナットが固定できるものでなければならない。

- (6) アンカーボルトは、コンクリート埋込部を除き、溶融亜鉛めっき仕上げとしなければならない。
- (7) アンカーボルトを設置する場合は、設置位置、寸法、間隔等を墨出して予め鉄筋加工を行って、配筋後に鉄筋の切断、追加、変更等が生じないようにしなければならない。
- 2 照明ポールの建柱は、次の各号によって行わなければならない。
 - (1) ベースプレート式照明ポールは、あらかじめ設置したアンカーボルトにベースプレート を仮固定して建柱する。建柱後、照明ポールの垂直を確認し、調整が必要な場合は、アンカーボルト設置箇所の基礎コンクリート上面とベースプレートとの間にライナープレート 等を挟みこんで調整し、固定する。
 - (2) 固定したアンカーボルト及びナットには、締付け位置表示マークを、消滅しにくい方法にて記入しなければならない。
 - (3) 照明ポールのベースプレートと基礎コンクリート面とのすき間部分は、無収縮性モルタルを充てんし、表面揃仕上げを行わなければならない。
 - (4) 照明ポールの管理番号は、照明ポールの所定位置に番号を記載したプレートを張付けて 表示しなければならない。

なお、照明ポール建柱場所に防音壁等を設置する場合にあっては、照明ポールの管理番号の表示位置は、監督職員が指示する箇所とする。

- (5) 設置後、照明柱の大きな揺れがある場合、主任監督員に報告しなければならない。
- 3 照明タワーを設置する場合は、前項1及び2によるほか、次の各号によって行わなければならない。
 - (1) 照明タワーの基礎は、照明タワーの規模に応じたものとし、基礎杭を必要本数所定の地耐力が得られる地盤まで打設する。
 - (2) 照明タワーは、器具を昇降させる機構を装備するか又は人が安全に昇降できるようなタラップを取付けたものとしなければならない。
 - (3) 地上高が20mを超す照明タワーは、第6節 建物避雷設備工事に準拠した避雷設備工事を 施さなければならない。

8.2.6 配 線

配線は、第4章 屋内配線工事及び第5章 屋外配線工事・構内電線路工事による他、次の各号によって行わなければならない。

- (1) 照明ポール内の配線は、所定のジョイントボックス以外では接続してはならない。
- (2) 安定器箱内の配線は、木板又は合成樹脂製支持枠等を使用して整然と行い、電線が直接 安定器に接触しないように処置しなければならない。
- (3) 安定器箱内に設置する電線用端子台は、電線の太さに適合した大きさとし、接続電線の回路種別、相、電圧区分等を明記したものでなければならない。
- (4) トンネル内及び高架下取付器具の引出し配線は、キャブタイヤケーブルを使用し、その 1線を接地線として用いるものとする。

なお、器具からの配線引出し部分は、グランドコネクタ等を使用して防水処置を施した ものとしなければならない。

8.2.7 接 地

道路照明設備に係わる接地工事は、第6章 接地工事により行わなければならない。

第 3 節 道路標識灯設備工事

8.3.1 一 般

道路標識灯設備工事は、道路標識のうち外照式標識灯及び内照式標識灯(以下「標識灯設備」 という。)に係わる工事は、低圧屋内配線工事及び次の各号によって行わなければならない。

- (1) 電圧降下及び電圧降下率は、4.1.1に準じたものとする。
- (2) 電線の許容電流は、4.1.2に準じたものとする。
- (3) 標識灯設備用配線工事は、金属管配線工事、合成樹脂管配線工事、可とう電線管配線工事、ケーブル配線工事、キャブタイヤケーブル配線工事、ケーブルラック配線工事としなければならない。

なお、トンネル内の内照式標識灯設備の配線は、第5章第6節トンネル内電線路工事に準 じた工事によって行うものとする。

- (4) 使用電線は、600Vビニル絶縁ビニルシースケーブル又は600V架橋ポリエチレン絶縁ビニルシースケーブルとする。
- (5) 標識灯設備は、白色蛍光ランプを光源とし、その安定器は、高力率形のものとする。

8.3.2 標識灯設備の取付け

標識灯設備の取付けは、次の各号によって行わなければならない。

(1) 外照式標識灯は、併設する標識板の形状、寸法に応じた必要個数を、標識板の取付け状態に併せて門型柱、F柱又は高架橋桁部等に取付け金物、ボルト類等によって堅固に取付

けなければならない。

- (2) 外照式標識灯は、風圧及び振動による振れを低減させるために取付け状態に応じた振れ 此め処置を講じなければならない。
- (3) 外照式標識灯の取付けは、併設した標識板、情報板の表示内容を視認・判読する場合に 支障が生じないような、位置及び方法にて行わなければならない。
- (4) 内照式標識灯は、その表示内容に応じた、形状、寸法のものを門型柱、F柱、照明ポール、標識ポール又は高架橋桁部等に取付金物、ボルト類等によって堅固に取付けなければならない。
- (5) 内照式標識灯の取付けは、その表示内容を所定の位置において視認・判読するのに支障 がないような、位置及び方法について調整しなければならない。

なお、内照式標識灯を取付ける場合は、建築限界を充分に確保できる場所としなければ ならない。

(6) トンネル内に内照式標識灯を取付ける場合は、壁面又は天井面に埋設したボルト類を用いて堅固に行う。

なお、トンネル内に内照式標識灯を設置する場合は、その周辺に設置する各種機器設備等と適当な間隔を保ち、その表示内容を視認・判読する場合に支障が生じないような位置としなければならない。

- (7) 設置後、標識灯ポールの大きな揺れがある場合、主任監督員に報告しなければならない。
- 8.3.3 標識灯ポールの取付け

標識灯ポールの取付けは、8.2.5に準じて行わなければならない。

8.3.4 配 線

標識灯設備用配線工事は、8.2.6に準じて行う他、次の各号によって行わなければならない。

- (1) 外照式標識灯の配線は、標識板に併設した安定器箱以降の管灯回路の電線にキャブタイヤケーブルを使用し、溶融亜鉛めっき電線管又は構造用鋼管の露出配管によって行う。
- (2) 照明ポールに取付ける内照式標識灯の配線は、安定器箱の電線用端子台以降、キャブタイヤケーブルを使用し、照明ポール内を経由し敷設しなければならない。なお、照明ポールの内照式標識灯の配線の引出し部分は、カップリングを溶接し、配線用グランドコネクタにて電線を保持させなければならない。

8.3.5 接 地

標識灯設備に係わる接地工事は、第6章 接地工事によって行わなければならない。

第 4 節 避難通路電灯設備工事

8.4.1 一 般

避難通路電灯設備工事は、道路トンネル部電灯設備及び電灯用配線設備に係わる工事を、低 圧屋内配線工事及び次の各号によって行わなければならない。

- (1) 電圧降下及び電圧降下率は、4.1.1に準じたものとする。
- (2) 電線の許容電流は、4.1.2に準じたものとする。
- (3) 電灯用配線設備の工事方法は、金属管配線工事、合成樹脂管配線工事、合成樹脂可とう 管配線工事、可とう電線管配線工事、ケーブル配線工事、キャブタイヤケーブル配線工事、 ケーブルラック配線工事としなければならない。
- (4) 使用電線は、ビニル電線、600Vビニル絶縁ビニルシースケーブル又は600V架橋ポリエチレン絶縁ビニルシースケーブルとする。

8.4.2 照明器具及び分電盤等の取付け位置

- 1 分電盤の取付け高さは、原則として盤中心位置で、床面から1.5mとする。 ただし、盤の上端は、床面から2.0m以下としなければならない。
- 2 配線器具の取付位置は次による。
 - (1) タンブラスイッチの取付け高さは、床面から1.3mとする。
 - (2) コンセントの取付け高さは、原則として次による。
 - イ 避難通路は床面から0.3mとする。
 - ロ 湿気の多い場所又は水分が付着するおそれのある場所では、床面から1.0mとする。
- 3 誘導灯及び誘導標識
- (1) 道路トンネル部避難通路へは誘導灯(小型)を設ける。
- (2) 道路トンネル部避難通路へは、誘導灯設備の補完として誘導灯標識を設ける。
- (3) 誘導灯の電源は常用電源停電後直ちに蓄電池電源に切り替え20分間以上連続して使用できるものとする。
- (4) 誘導灯の種類は次による。
 - イ 避難口誘導灯は、避難口である旨を表示した誘導灯で、避難口の上部に設ける。
 - 口 通路誘導灯
 - a) 廊下通路誘導灯

避難通路となる廊下に設ける誘導灯である。

b) 階段通路誘導灯

避難通路となる階段及び傾斜路に設ける誘導灯である。

- (5) 避難口誘導灯の明るさは直線距離で30m離れた所から表示面の文字及び色彩が容易に識別できるものであること。 (消則 28条の2)
- (6) 避難口誘導灯は、床面から誘導灯下面までの高さが1.5m以上~2.5m以下の範囲内に設けること。 (消則 28条の3)

- (7) 廊下通路誘導灯は、各階ごとその通路又は廊下の各部分から一つの通路誘導灯までの歩 行距離が10m以下となる箇所及び曲がり角に設備すること。 (消則28条の3)
- (8) 通路誘導灯は、次の種類毎に設けること。 (消則 28条の3)
 - イ 廊下通路誘導灯は、床面から誘導灯上面までの高さが1m以下の箇所に設けること。
 - ロ 階段通路誘導灯は、階段の天井の室内に面する部分又は壁体等に設けること。 なお、これを非常用の照明装置(建基改全 第126条の4)と兼用する場合はそれぞれの 規格に適合するものを用いること。
- (9) 階段に設ける通路誘導灯の明るさは路面及び踊り場の中心線で測って、1ルックス以上とする。 (消則 28条の3)
- (10) 床面に設ける誘導灯は、荷重により破壊されない強度を有するものを設置する。 (消 則 28条)
- (11) 誘導灯は、A級、B級、C級とし、次表による。

誘	導灯等の 種 類	区分	表示面の縦の寸法(m) 常用電源の表示面平均輝度(cd/m²)	明るさ	表示記号
		A級	0.4以上 350以上800未満	50以上	A級
	波器豆锈道灯	B級	0.2以上0.4未満	20以上	B級・BH形
	避難口誘導灯		250以上800未満	10以上20未満	B級·BL形
		C級	0.1以上0.2未満 150以上800未満	1.5以上	C級
		A級	0.4以上 400以上1000未満	60以上	A級
通	廊下又は通路に設	B級	0.2以上0.4未満	25以上	B級・BH形
路	置するもの		350以上1000未満	13以上25未満	B級・BL形
誘導		C級	0.1以上0.2未満 300以上1000未満	5以上	C級
灯	階段又は傾斜路に 設置するもの				
	客席誘導灯				
1,7 4	誘導 選集口誘導標識 表示面の大きさは、正方形のものにあっては一辺の長さが2cm以上、正方形の(縦寸法を短辺とする 標識 通路誘導標識 のにあっては短変の長さが10cm以上かっ面積が300cm以上であること。				

- 注1非常電源時における表示面平均輝度(cd/m²)は、避難口誘導灯が、100以上300未満、通路 誘導灯が、150以上400未満であること。
 - 2 明るさとは、表示面の平均輝度(cd/m²)×表示面の面積(m²)をいう。
 - 3表示記号とは、器具に表示する記号をいう。
- (12) 誘導灯の設置間隔又は適用する見とおし距離(有効範囲)は次による。
 - イ 当該誘導灯を容易に見とおすことができない場合又は識別することができない場合は、 当該誘導灯までの歩行距離が10m以下となるように誘導灯を配置する。
 - ロ 誘導灯表示面の大きさを、A級が0.4m, B級が0.2m、C級が0.1mを基本としたものは、 表aの距離を有効範囲とする。
 - ハ イ以外のものについては、次の式に定めるところにより算出した距離を有効範囲とすることができる。

D = k h

- Dは、歩行距離 (メートル)
- hは、誘導灯の表示面の縦寸法 (メートル)
- kは、表bの区分に応じた値

表a誘導灯の見とおし距離

 \overline{X} 分 距離(mm) 避 矢印なし 60 Α 難 級 矢印付 40 口 矢印なし 30 В 誘 級 矢印付 20 導 灯 C 級 15 通 A 級 20 路 B 級 15 誘 導 C 級 10

表b区分に応じたkの値

×	分	k の値
非難口	矢印なし	150
誘導灯	矢印付	100
通	路誘導灯	50

4 非常灯

- (1) 道路トンネル部避難通路へは非常灯を設ける。
- (2) 非常灯の種類は次による。

イ 電池内蔵型

常時は常時電源で点灯し、常用電源停電時には内蔵電池により点灯する灯具を用い、次の機種による。

なお、蓄電池は停電後充電を行うことなく30分以上の放電に耐えるものであること。

- a) 常時点灯し常用電源停電時にも点灯するもの
- b) 常時滅灯し常用電源停電時に点灯するもの

口 電池別置型

常時は常用電源で点灯し、常用電源停電時には別置電源により点灯する灯具を用い、 非常電源設備及び無停電電源設備による方式とする。

(3) 非常時の照明は、直接照明とし、床面において水平照度1ルックス以上であること。ただし、蛍光灯の場合は、2ルックス以上とする。(建基令 126条)

8.4.3 器具及び分電盤等の取付け

器具及び分電盤等の取付けは、次の各号によって行わなければならない。

- (1) 器具及び分電盤等の取付けは、取付け場所に応じた方法にて行い、特殊な取付け方法に て行う場合には、あらかじめ取付け詳細図を作成し、監督職員の承諾を得ておかなければ ならない。
- (2) 天井取付けの器具は、原則として吊ボルト、ボルト等で支持し、平座金及びナットを用い堅固に取付け、必要に応じてねじ等により振れ止めを施す。また、野縁に取付ける場合

にあっては、補強を講じておかなければならない。

(3) 重量のある器具の取付けは、コンクリートスラブその他構造体に径9mm以上の吊ボルト、ボルト等で堅固に支持しなければならない。

なお、器具の支持点数は、表 8.4.1によるものとする。ただし、ホームライトについて はこの限りでないものとする。

表 8.4.1 器具の支持点数

種類	ボルト本数
電池内蔵形環形蛍光灯器具30形以上	1以上
電池内蔵形蛍光灯器具20W×1以上 蛍光灯器具20W×2以上、又は40W×1以上	2以上
蛍光灯器具20W×4以上、又は40W×5以上	4以上

[備考] コンパクト形蛍光灯器具、Hf蛍光灯器具は、上記表に準じ、原則として器具の背面形式に適合した本数とする。

- (4) 壁取付け器具は、壁面とのすき間のできないようにし、体裁よく取付けなければならない。
- (5) メタルラス張り、ワイヤラス張り、金属板張り等の木造造営物に器具を取付ける場合は、 これら金属部分と器具の金属製部分及びその取付け金具とは、電気的に絶縁を保てるよう に処置しておかなければならない。
- (6) 防水形器具は、取付け場所及び器具の構造に適合した方法で取付けなければならない。
- (7) タンブラスイッチは、原則として、つまみを上側又は右側にしたとき閉路となるように 取付けなければならない。
- (8) コンセントは、2極コンセントの垂直刃受けの刃受け穴に長短がある場合では、原則として、長い方を向かって左側に取付け、接地側としなければならない。
- (9) 3極又は4極コンセントは、3極の垂直刃受け穴及び4極の中央垂直刃受け穴を接地側としなければならない。
- (10) 分電盤の取付けは、鉛直に行い、扉の開閉において支障が生じないように行わなければならない。
- (11) 分電盤を埋込み又は半埋込みにて設置する場合は、あらかじめ仮枠等で箱抜きを行い、 分電盤取付け後、すき間等を補修しておかなければならない。
- (12) 分電盤を露出して設置する場合は、壁面とのすき間のないように体裁よく取付けなければならない。

8.4.4 配 線

建物電灯設備の配線工事は、第4章 屋内配線工事によるほか、次の各号によって行わなければならない。

(1) 二重天井内の位置ボックスから器具に至る配線は、可とう電線管又はケーブル配線工事

によって行わなければならない。

なお、電源別置型の非常用器具に至る配線においては、耐火ケーブルを使用しなければ ならない。

- (2) 二重天井内に設ける位置ボックスは、容易に点検できるものとしなければならない。
- (3) 器具単体を連続して突合わせ設置する場合は、突合わせ部分の配線を屋内配線工事に準じて行わなければならない。
- (4) 単極スイッチは、電源側配線を接続するものとする。
- (5) 電線が金属部分を貫通する場合は、電線の被覆が損傷しないような処置を講じなければならない。

8.4.5 接 地

避難通路電灯設備工事に係わる接地工事は、第6章 接地工事によって行わなければならない。

第 5 節 建物電灯設備工事

8.5.1 一 般

建物電灯設備工事は、建物電灯設備及び電灯用配線設備に係わる工事を、低圧屋内配線工事及 び次の各号によって行わなければならない。

- (1) 電圧降下及び電圧降下率は、4.1.1に準じたものとする。
- (2) 電線の許容電流は、4.1.2に準じたものとする。
- (3) 電灯用配線設備の工事方法は、金属管配線工事、合成樹脂管配線工事、合成樹脂可とう 管配線工事、可とう電線管配線工事、ケーブル配線工事、キャブタイヤケーブル配線工事 及びケーブルラック配線工事としなければならない。
- (4) 使用電線は、ビニル電線、600Vビニル絶縁ビニルシースケーブル又は600V架橋ポリエチレン絶縁ビニルシースケーブルとする。

8.5.2 照明器具及び分電盤などの取付け位置

建物用照明器具(以下この節において「器具」という。)及び分電盤などの配線器具の取付け 位置は、次の各号によるものとする。

- 1 分電盤の取付け高さは、原則として盤中心位置で、床面から1.5mとする。 ただし、盤の上端は、床面から2.0m以下としなければならない。
- 2 配線器具の取付位置は次による。
 - (1) タンブラスイッチの取付け高さは、床面から1.3mとする。
 - (2) コンセントの取付け高さは、原則として次による。
 - イ 事務室又はこれに類する場所では、床面から0.3mとする。
 - ロ 和室の場合は、床面から0.15mとする。
 - ハ 湿気の多い場所又は水分が付着するおそれのある場所では、床面から1.0mとする。

- 3 誘導灯及び誘導標識
 - (1) 設置対象、設置区分、設置場所は表8.5.1による。
 - (2) 誘導灯の電源は常用電源停電後直ちに蓄電池電源に切り替え、20分間以上連続して使用できるものとする。 (消則 28条)
 - (3) 誘導灯の種類は次による。
 - イ 避難口誘導灯は、避難口である旨を表示した誘導灯で、防火対象物又はその部分の避 難口の上部に設ける。
 - 口 通路誘導灯
 - a) 室内通路誘導灯

居室内の避難経路及び展開した場所に設ける誘導灯である。

b) 廊下通路誘導灯

避難通路となる廊下に設ける誘導灯である。

c) 階段通路誘導灯

避難通路となる階段及び傾斜路に設ける誘導灯である。

ハ 客席誘導灯

客席の通路部分に設ける誘導灯である。

- (4) 避難口誘導灯の明るさは、直線距離で30m離れた所から表示面の文字及び色彩が容易に 識別できるものであること。(消則 28条の2)
- (5) 避難口誘導灯は、床面から誘導灯下面までの高さが1.5m以上~2.5m以下の範囲内に設けること。 (消則 28条の3)
- (6) 室内通路誘導灯及び廊下通路誘導灯は、各階ごとにその通路又は廊下の部分から一つの 通路誘導灯までの歩行距離が10m以下となる箇所及び曲がり角に設備すること。 (消則 28 条の3)
- (7) 通路誘導灯は、次の種類毎に設けること。
 - イ 室内通路誘導灯は、床面から誘導灯下面までの高さが2.5m以下とし、天井面から0.5m 以上離した下方の箇所へ設けること。
 - ロ 廊下通路誘導灯は、床面から誘導灯上面までの高さが1m以下の箇所に設けること。
 - ハ 階段通路誘導灯は、階段の天井の室内に面する部分又は壁体等に設けること。 なお、これを非常用の照明装置(建基改全 第126条の4)と兼用する場合は、それぞれ の規格に適合するものを用いること。
- (8) 階段に設ける通路誘導灯の明るさは、路面及び踊り場の中心線で測って、1ルックス以上とする。 (消則 28条の3)
- (9) 床面に設ける誘導灯は、荷重により破壊されない強度を有するものを設置する。

表8.5.1 誘導灯及び誘導標識の設置対象物並びに種類による設置区分

設置対象(政令		設置対象	象(政令第	第26条) 避難口誘導灯			通路誘導灯		通路調	誘導灯		
			避難口 誘導灯			AT ALL	ניידר ניון י		(けるもの)		さけるもの)	
							の床面積		の床面積		の床面積	
			通 路 誘導灯	客 席 誘導灯		1,000m ² 以上	1,000m ² 未満	1,000m ² 以上	1,000m ² 未満	1,000m² 以上	1,000m ² 未満	
(1)	ア	劇場、映画館、演芸場又は										* 1
(1)	イ	観覧場 公会堂又は集会場		全部								避難口A級 避難口B級・B
	_	キャバレー、カフェバー、										H形又はB級・
(2)	ア	ナイトクラブその他これらに類するもの										B L形+点滅式
	イ	遊技場又はダンスホール	全部			* 1		* 3				* 2
(3)	ア	待合、料理店その他これら に類するもの										避難口C級以上 (避難の方向を
	イ	飲食店										示す矢印を有す るものは、B級
(4)		百貨店、マーケットその他 の物品販売業を営む店舗										以上)
(1)		又は展示場										* 3
	ア	旅館、ホテル又は宿泊所	地階、									通路A級
(5)	イ	寄宿舎、下宿又は共同住宅	無窓階、									通路B級・BH 形
	'	HILL THATSANGE	11階以上 の部分				* 2	*	4			715
	ア	病院、診療所又は助産所	V 100 J									*4 通路C級以上
(6)	イ	老人福祉施設、有料老人ホーム、教護施設	全部									温超 0 版 2 工
(0)	ウ	幼稚園、盲学校、ろう学校	보 메									
	9	又は養護学校										
(7)		小学校、中学校、高等学校、 高等専門学校、大学、各種	地階、									
		学校その他	無窓階、 11階以上							*	4	
(8)		図書館、博物館、美術館その他これらに類するもの	の部分									
	ア	公衆浴場のうち、トルコ浴		1		* 1]	* 3				
(9)		場、サウナ浴場 アに掲げる公衆浴場以外	全 部						J			
	イ	の公衆浴場			全部							
(10)		車両の停車場又は船舶若 しくは航空機の発着場				k	: 1	*	3			
(11)		神社、寺院、教会その他こ			注)1							
(11)	ア	れらに類するもの 工場又は作業場										
(12)	,	上場スはTF乗場 映画スタジオ又はテレビ	地階、									
	1	スタジオ	無窓階、 11階以上				. 0		4			
(13)	ア	自動車車庫又は駐車場 飛行機又は回転翼航空機	の部分	ll .		7	: 2	*	4			
()	イ	の格納庫										
(14)		倉庫 全各項に該当しない事業										
(15)		場			_		7		1			
		複合用途防火対象物のうち、その一部が(1)項から										
	ア	(4)項まで、(5)項ア、(6)	全部	(1)項 の用途		* 1		* 3				
		項又は(9)項アに掲げる防 火対象物の用途に供され	Д н	部分								
(16)		ているもの										
		アに掲げる複合用途防火	地階、 無窓階、									
	イ	対象物以外の複合用途防 火対象物	11階以上									
16		> V/1 st/.l/\	の部分	<u> </u>	-							
の		地下街		(1)の用 途部分								
2		建築物の地階((16の2)項		巫叩刀	7							
		に掲げるものの各階を除		/								
1.0		く)で、連続して地下道に	全 部	/		*	: 2	*	3			
16 の		面して設けられたもの ((1)項から(4)項まで、(5)		/								
3		項ア、(6)項又は(9)項アに		/								
		掲げる防火対象物の用途 に供される部分が存する		[/								
		ものに限る。)		<u>/</u>	<u> </u>							

注1) ただし、誘導灯を設置したとき、その有効範囲内には、誘導標識を設置しなくてよい。

(10) 誘導灯はA級、B級、C級とし、次表による。

誘	誘導灯等の 種 類		表示面の縦の寸法(m) 常用電源の表示面平均輝度(cd/m²)	明るさ	表示記号		
			0.4以上 350以上800未満	50以上	A級		
,	· · · · · · · · · · · · · · · · · · ·	B級	0.2以上0.4未満	20以上	B級·BH形		
	避難口誘導灯		250以上800未満	10以上20未満	B級·BL形		
			0.1以上0.2未満 150以上800未満	1.5以上	C級		
		A級	0.4以上 400以上1000未満	60以上	A級		
通	廊下又は通路に設	B級	0.2以上0.4未満	25以上	B級·BH形		
路	置するもの		350以上1000未満	13以上25未満	B級·BL形		
誘導	誘		0.1以上0.2未満 300以上1000未満	5以上	C級		
灯	階段又は傾斜路に 設置するもの	-					
	客席誘導灯				_		
誘導	誘導 避難口誘導標識		表示面の大きさは、正方形のものにあっては一辺の長さが2㎝以上、正方形の(縦寸法を短				
標識	通路誘導標識	辺とする)ものにあっては短変の長さが10cm以上かっ面積が200cm以上であること。					

- 注 1 非常電源時における表示面平均輝度(cd/m²)は、避難口誘導灯が、100以上300未満、通路誘導灯が150以上400未満であること。
 - 2 明るさとは、表示面の平均輝度(cd/m²)×表示面の面積(m²)をいう。
 - 3 表示記号とは、器具に表示する記号をいう。
 - (11) 誘導灯の設置間隔又は適用する見とおし距離(有効範囲)は次にする。
 - イ 当該誘導灯を容易に見とおすことができない場合又は識別することができない場合は、 当該誘導灯までの歩行距離が10m以下となるように誘導灯を配置する。
 - ロ 誘導灯表示面の大きさを、A級が0.4m, B級が0.2m、C級が0.1mを基本としたものは、 表 a の距離を有効範囲とする。
 - ハ イ以外のものについては、次の式に定めるところにより算出した距離を有効範囲とすることができる。
 - D = k h
 - Dは、歩行距離 (メートル)
 - hは、誘導灯の表示面の縦寸法 (メートル)
 - kは、表bの区分に応じた値

表a誘導灯の見とおし距離

	区	分	距離(mm)
避	Α	矢印なし	60
難	級	矢印付	40
日誘	√ <i>t</i> π <i>t</i>	矢印なし	30
導		矢印付	20
灯	(級	15
通	F	A 級	20
路誘	' I D	3 級	15
導	(級	10

表b区分に応じたkの値

区	分	kの値
非難口	矢印なし	150
誘導灯	矢印付	100
通路	50	

(12) 赤色灯は法令で定められた非常用の進入口に施設する。(建基令 126条)

3 非常灯

(1) 非常灯は法令で定められた非常用照明装置で設置箇所は次による。 (建基令 126条)

非常用照明設備場所

	設置義務のある場所	設置義務のある場所	JR対象施設参考
特殊建築物	(1)劇場、映画館、演芸場 観覧場、公会堂、集会場 (2)病院、(病室は除く)、病室は宿(宿(除底、病室下宿(宿(宮(宿))、育宿会(原金)、有宿舎、明金、 (3)博物館、美術館、とはない。 (3)博物館、美術館、とはないではない。 (4)百貨、キャンションのでは、大クラ場、では、大クラットのでは、大のでは、大のでは、カーケー、に、大のでは、カーケッカ、、大のでは、カーケッカ、、大のでは、大のでは、大のでは、大のでは、大のでは、大のでは、大のでは、大ので	(1) 居室 居住、報務、の 居室 と集に、報子の に と集に、 ない と ない	
その他の建筑	(1) 段数が3以上で延べ面積が500m²を超える建築物(2) 延べ面積が1000m²を超える建築物	上記(1)、(2)、(3)及び(4) 一戸建て住宅、学校、体 育館は不要	
築物	(3) 採光上有効な窓口や開口 部の合計が床面積の1/20未 満となる居室		

備考) 上表は建築基準法施行令第 126条の4、別表第一告示第34号(抜枠)

(13) 非常灯の種類は次による。

イ 電池内蔵型

常時は常時電源で点灯し、常用電源停電時には内蔵電池により点灯する灯具を用い、次の機種による。

なお、蓄電池は停電後充電を行うことなく30分以上の放電に耐えるものであること。

- a) 常時点灯し常用電源停電時にも点灯するもの
- b) 常時滅灯し常用電源停電時に点灯するもの

口 電池別置型

常時は常用電源で点灯し、常用電源停電時には別置電源により点灯する灯具を用い、 非常電源設備及び無停電電源設備による方式とする。

(14) 非常時の照明は、直接照明とし、床面において水平照度1ルックス以上であること。ただし、蛍光灯の場合は、2ルックス以上とする。(建基令 126条)

8.5.3 器具及び分電盤などの取付け

器具及び分電盤などの取付けは、次の各号によって行わなければならない。

- (1) 器具及び分電盤などの取付けは、取付け場所に応じた方法にて行い、特殊な取付け方法 にて行う場合には、あらかじめ取付け詳細図を作成し、監督職員の承諾を得ておかなけれ ばならない。
- (2) 天井取付けの器具は、原則として吊ボルト、ボルトなどで支持し、平座金及びナットを 用い堅固に取り付け、必要に応じてねじなどにより振れ止めを施す。また、野縁に取り付 ける場合にあっては、補強を講じておかなければならない。
- (3) シャンデリアなどの重量のある器具の取付けは、コンクリートスラブその他構造体に径 9 mm以上の吊ボルト、ボルトなどで堅固に支持しなければならない。

なお、器具の支持点数は、表 8.4.1によるものとする。ただし、ホームライトについて はこの限りでないものとする。

表 8.4.1 器具の支持点数

種類	ボルト本数
電池内蔵形環形蛍光灯器具30形以上	1以上
電池内蔵形蛍光灯器具 20W×1以上 蛍光灯器具 20W×2以上、又は40W×1以上	2以上
蛍光灯器具20W×4以上、又は40W×5以上	4以上

[備考] コンパクト形蛍光灯器具、Hf蛍光灯器具は、上表に準じ、原則として器具の背面形式に適合した本数とする。

(4) 壁取付け器具は、壁面とのすき間のできないようにし、体裁よく取付けなければならない。

- (5) メタルラス張り、ワイヤラス張り、金属板張りなどの木造造営物に器具を取り付ける場合は、これら金属部分と器具の金属製部分及びその取付け金具とは、電気的に絶縁を保てるように処置しておかなければならない。
- (6) 防水形器具は、取付け場所及び器具の構造に適合した方法で取付けなければならない。
- (7) タンブラスイッチは、原則として、つまみを上側又は右側にしたとき閉路となるように 取付けなければならない。
- (8) コンセントは、2極コンセントの垂直刃受けの刃受け穴に長短がある場合では、原則として、長い方を向かって左側に取り付け、接地側としなければならない。
- (9) 3極又は4極コンセントは、3極の垂直刃受け穴及び4極の中央垂直刃受け穴を接地側としなければならない。
- (10) 分電盤の取付けは、鉛直に行い、扉の開閉において支障が生じないように行わなければならない。
- (11) 分電盤を埋込み又は半埋込みにて設置する場合は、あらかじめ仮わくなどで箱抜きを 行い、分電盤取付け後、すき間等を補修しておかなければならない。
- (12) 分電盤を露出して設置する場合は、壁面とのすき間のないように体裁よく取付けなければならない。

8.5.4 配 線

建物電灯設備の配線工事は、第4章屋内配線工事による他、次の各号によって行わなければならない。

(1) 二重天井内の位置ボックスから器具に至る配線は、可とう電線管又はケーブル配線工事 によって行わなければならない。

なお、電源別置型の非常用器具に至る配線においては、耐火ケーブルを使用しなければ ならない。

- (2) 二重天井内に設ける位置ボックスは、容易に点検できるものとしなければならない。
- (3) 器具単体を連続して突合わせ設置する場合は、突合わせ部分の配線を屋内配線工事に準じて行わなければならない。
- (4) 単極スイッチは、電源側配線を接続するものとする。
- (5) 電線が金属部分を貫通する場合は、電線の被覆が損傷しないような処置を講じなければならない。

8.5.5 接 地

建物電灯設備に係わる接地工事は、第6章 接地工事によって行わなければならない。

第 6 節 建物動力用配線工事

8.6.1 一 般

建物動力配線工事において、建物動力設備に係わる制御盤等据付工事及び配線工事は、低圧 屋内配線工事及び次の各号によって行わなければならない。

- (1) 電圧降下及び電圧降下率は、4.1.1に準じたものとする。
- (2) 電線の許容電流は、4.1.2に準じたものとする。
- (3) 動力用配線工事は、金属管配線工事、合成樹脂管配線工事、合成樹脂可とう管配線工事、 可とう電線管配線工事、ケーブル配線工事、キャブタイヤケーブル配線工事及びケーブル ラック配線工事としなければならない。
- (4) 使用電線は、ビニル電線、600Vビニル絶縁ビニルシースケーブル又は600V架橋ポリエチレン絶縁ビニルシースケーブルとする。

8.6.2 制御盤などの取付け位置

制御盤などの取付位置は、次の各号によるものとする。

- (1) 壁掛形制御盤の取付け高さは、原則として盤の中心位置で、床面から1.5mとする。ただし、盤の上端は、床面から2.0m以下としなければならない。
- (2) 開閉器箱の取付け高さは、原則として箱の中心位置で、床面から1.5mとする。

8.6.3 制御盤などの据付け

制御盤などの据付けは、次の各号によって行わなければならない。

- (1) 制御盤、開閉器箱などを据付ける場合は、それらの操作、監視、点検作業において、支障が生じないような場所及び据付け方法としなければならない。
- (2) 進相コンデンサを盤外に取り付ける場合は、電動機用開閉器又は制御盤の負荷側に接続し、コンデンサに至る回路には開閉器又は配線用遮断器などを設けてはならない。
- (3) 天井扇、換気扇は、異常な振動が生じないよう堅固に取り付けなければならない。
- (4) 電動機の据付けは、床面に基礎を設け、その回転により異常な振動が生じないよう堅固 に取り付けなければならない。

8.6.4 配 線

建物動力設備の配線工事は、第4章 屋内配線工事による他、次の各号によって行わなければならない。

- (1) 電動機の接続相は、正方向の相回転が行えるように電源接続しなければならない。
- (2) 電動機接続箇所の短小な配線は、可とう電線管配線工事によって敷設する。ただし、電 動機に接続用端子が付属していない場合にあっては、エントランスキャップなど以後の配 線は、キャブタイヤケーブル配線工事にて行わなければならない。
- (3) 水中電動機に付属するケーブルは、水気のある場所で接続を行ってはならない。
- (4) 高圧電動機への配線は、第4章 第15節 高圧ケーブル配線工事に準じて行わなければならない。

8.6.5 接 地

建物動力配線設備に係わる接地工事は、第6章 接地工事によって行わなければならない。

第 7 節 建物避雷設備工事

8.7.1 一 般

建物避雷設備工事は、JIS A 4201「建築物等の避雷設備(避雷針)」によるほか、この節によるものとする。

8.7.2 受雷部の取付け

- 1 突針部の取付けは、次の各号によって行わなければならない。
 - (1) 突針を突針支持金物に取り付けるときは、銅ろう付け又は黄銅ろう付けで接合する。
 - (2) 突針と導線の接続は、導線を差し込んでねじ止めし、ろう付けを完全に施さなければならない。
 - (3) 突針支持金物及び取付金具は、建物塔屋の防水に注意して風圧などに耐えるよう堅固に 取り付けるものとする。
- 2 棟上げ導体を敷設する場合は、t3×25mm以上の大きさの銅帯を約0.6mごとに金物を用いて 取付け、30m以下ごとに伸縮装置を設ける。また、銅帯の接続は、黄銅ろう付け、又は継手を 用いた方法としなければならない。
- 3 笠木を棟上げ導体として使用する場合の接続は笠木の伸縮を考慮し、かつ、異種金属接触 腐食を起こさないように行う。

8.7.3 避雷導線の敷設

避雷導線の敷設は、次の各号によって行わなければならない。

- (1) 導線は、太さ38mm2以上の銅より線とする。
- (2) 導線の支持は、銅又は黄銅製の止め金具を使用して堅固に取付け、導線を垂直に引下げる部分は約1mごとに、水平に敷設する部分は、約0.6mごとに支持しなければならない。
- (3) 導線は、その長さが最も短くなるように敷設しなければならない。 なお、やむを得ない場合は、直角に曲げても差し支えないが、コ字形に曲げる場合には、 コ字形に曲げる部分の全長がその開口端の間隔の10倍を超えてはならない。
- (4) 導線が地中に入る部分、その他導線を保護する必要のある箇所には、ステンレス管(非磁性のものに限る)、硬質ビニル管などを使用して地上2.5m、地下0.3mまでの部分を保護しなければならない。
- (5) 導線の途中接続は避け、やむを得ず接続する場合は、導線接続器を使用し、導線と接続器の接続はろう付けを完全に施さなければならない。

8.7.4 導線棟上げ導体と他の工作物との離隔

導線及び棟上げ導体と他の工作物との離隔は、次の各号によって行わなければならない。

- (1) 導線及び棟上げ導体は、電力線、通信線又はガス管から1.5m以上離隔しなければならない。
 - (2) 導線及び棟上げ導体から距離1.5m以下に近接する雨どい、鉄管、鉄はしご等の金属体は、 導線に接続しなければならない。

なお、この接続線は、太さ14mm2以上の銅より線を使用する。

(3) 導線及び棟上げ導体と工作物との間に静電的遮へい物がある場合は、前2号を適用してはならない。

8.7.5 鉄骨などと導線との接続

鉄骨造、鉄骨鉄筋コンクリート造などの建物で、避雷導線の一部を鉄骨又は鉄筋で代替する 場合は、受雷部及び避雷導線と鉄骨などとの接続を、次の各号によって行わなければならない。

- (1) 避雷導線を鉄骨又は鉄筋に接続する場合は、銅板を黄銅ろう付けした鉄板を鉄骨又は2 本の鉄筋に溶接し、それに避雷導線を接続した接続端子を取り付ける。ただし、避雷導線 を直接鉄板にテルミット溶接する場合は、この限りではないものとする。
- (2) 避雷導線を接続端子に取り付ける場合は、接続端子に避雷導線を差し込み、黄銅ねじ2 本で締め付けた後、はんだを充てんする。
- (3) 接続端子と鉄板との接続は、径9.6mmの黄銅ボルト2本で行う。
- (4) 溶接部分が露出の場合は、接続部分に防食塗料を塗布する。

8.7.6 接地極の埋設

接地極の埋設は、次の各号によって行わなければならない。

- (1) 接地極は、t1.5×900×900mm以上の銅板を使用する。
- (2) 導線と接地極との接続は、黄銅ろう付け、銀ろう付け、テルミット法による接続又は三 ツ手型 (銅) 端子による接続にて行わなければならない。
- (3) 接地極は、地下0.75m以上の深さに埋設しなければならない。
- (4) 接地極を埋設した箇所は、埋戻し後固く突固め、地面をもとに復旧させなければならない。
- (5) 1条の引下げ導線に2個以上の接地極を接続する場合は、その間隔を2m以上とし、地下 0.75m以上の深さのところで、太さ22mm2以上の銅より線で接続しなければならない。
- (6) 引下げ線の総合接地抵抗値は、10Ω以下とする。
- (7) 接地極及び埋設地線は、ガス管から1.5m以上離隔させなければならない。
- (8) 接地抵抗低減剤を使用する場合は、監督職員の承諾を得てから使用するものとする。
- (9) 接地極位置などの表示は、6.3.5によるものとする。

第9章 通信設備工事

第 9 章 通信設備工事

第1節 一般 事項

9.1.1 適用範囲

- 1 この章は、道路用通信設備工事、電気通信兼用工作物設備工事及び建物用通信設備工事に適用 する。
- 2 道路用通信設備とは、首都高速道路に設置される道路付属施設及び道路安全施設としての通信 設備並びにこれらの施設に係わる通信制御用線路設備をいう。
- 3 電気通信兼用工作物とは、次の各号に示すような施設をいう。
 - (1) 当社と第1種電気通信事業者との協定に基づき、首都高速道路に設置する光ファイバーケーブルによる幹線用通信線路(以下「通信幹線兼用工作物」という。)をいう。
 - (2) 当社とトンネル内不感知対策事業者との協定に基づき、首都高速道路のトンネル内に設置する漏洩同軸ケーブルによるトンネル内不感知対策設備(以下「トンネル通信兼用工作物」という。)をいう。

9.1.2 工事の種類

道路用通信設備、電気通信兼用工作物設備及び建物用通信設備に係わる工事の種類は、次の各号に示すものとする。

- (1) 道路用通信設備工事の種類は、下記に示すものとする。
 - イ 道路通信用管路及び線路敷設工事
 - 口 多重通信設備工事
 - ハ 防犯通報設備工事
 - 二 非常電話設備工事
 - ホ 再放送設備工事
- (2) 電気通信兼用工作物工事の種類は、下記に示すものとする。
 - イ 通信幹線兼用工作物管路工事
 - 口 通信幹線兼用工作物線路敷設工事
 - ハ トンネル通信兼用工作物設備工事
- (3) 建物用通信設備工事の種類は、下記に示すものとする。
 - イ 建物通信用管路及び線路敷設工事
 - 口 電話交換機設備工事
 - ハ 火災報知設備工事
 - ニ 電気時計及びインターホン設備工事
 - ホ テレビ共聴設備工事

9.1.3 電線の種別

通信設備工事において使用する電線の種別は、表9.1.1に示すものとする。

表9.1.1 電線の種別

品 名	記 号	規格
屋内用通信線電線	TOV	JCS C68
屋外用通信線電線	TIV TIVF	JCS C69
通信用構内ケーブル		JCS C70
ボタン電話ケーブル		JCS C71
市内CCPケーブル	CCP	JCS C72
市内対ポリエチレン絶縁 ビニルシースケーブル	CPEV EM-CPEE	JCS 224C
シールドジャンパー線		
ビニルジャンパー線	TJV	
高周波同軸ケーブル	ECX	JIS C 3501
局内ビニル絶縁ビニルシース ケーブル	SWVP	
TV受信用フィーダコード		JIS C 3330
漏洩同軸ケーブル	LCX	
光ファイバーケーブル	OF	JIS C 6820
通信用フラットケーブル		
計装ケーブル	KPEV EM-KPEE	
PVC絶縁銅編組 シールドケーブル		

9.1.4 電線の適用標準

電線の適用標準は、次の各号によって行わなければならない。

(1) 光ファイバーケーブルは、幹線通信線路のPCM多重伝送、画像多重伝送、CCTV画像伝送、管理部間同期多重伝送に使用する。

なお、通信幹線兼用工作物における光ファイバーケーブルにあっても同様とする。

- (2) 光ファイバーケーブルは、CCTV画像伝送に係わる分岐通信線路においても使用する。
- (3) CCP、CPEVケーブルは、準幹線通信線路及び分岐通信線路における音声及びデータの信号伝送に使用する。
- (4) ビニルジャンパー線は、端子盤内での端子間を連絡するジャンパー線として使用する。
- (5) シールドジャンパー線は、誘導障害を防止する必要がある回線のジャンパー線として使用する。
- (6) 高周波同軸ケーブルは、高周波回線及び誘導障害を防止する必要がある回線に使用する。
- (7) プリント局内ケーブルは、建物内での通信機器間を連絡する区間の配線に使用する。
- (8) TV受信用フィーダケーブルは、空中線以降、TV受信機に至る区間の配線に使用する。
- (9) 構内用ケーブルは、CCP及びCPEVケーブルが使用されている通信線路での建物内配線に使用する。
- (10) 屋内用通信電線は、小規模で部分的な屋外通信配線に使用する。
- (11) 屋内用通信電線は、屋内端子盤以降、電話機に至る区間での配線に使用する。
- (12) 計装ケーブルは、計算機及び周辺機器間を連絡する区間の配線に使用する。

- (13) 通信用フラットケーブルは、屋内端子盤以降、端末通信機器に至る区間での床配線専用として使用する。
- (14) 漏洩同軸ケーブルは、トンネル内での高周波及び超短波帯域無線の空中線として使用する。 なお、トンネル通信兼用工作物における漏洩同軸ケーブルにあっても、同様とする。
- (15) PVC絶縁銅編組シールドケーブルは、計算機及び周辺機器間でのデータ伝送用区間の配線 に使用する。

9.1.5 通信線路の誘導

通信線路が他の電気設備や放送設備から誘導障害を受けるおそれのある箇所で障害対策は、配線 工事及び使用電線の選択において充分対策を講じておかなければならない。

9.1.6 電線の長さ

電線は、通信線路用途及び使用場所の条件などに適合した長さのものとし、その接続箇所を極力 少なくするように努めなければならない。

9.1.7 CCPケーブルの方向性

CCPケーブル等のように方向性があるケーブルにあっては、あらかじめ現地でのケーブル敷設方向に適合したケーブルドラムを製作し、敷設しなければならない。

9.1.8 成端処理

電線の成端処理は、次の各号によって行わなければならない。

- (1) 電線の端末処理は、心線を傷つけないようにして行い、電線に適合した工具を用いて外装をはぎ取る。
- (2) あらかじめ、端末処理を行った後、心線にビニルテープを半幅重ね巻きとする。ただし、湿気の多い場所では、合成樹脂モールドを用いて成端部を防護し、エポキシ樹脂、ウレタン樹脂等を注入して防湿成端処理を行う。

9.1.9 電線の接続

電線の接続は、電気抵抗の増加、絶縁抵抗及び引張力を低下させないようにし、4.1.18によるほか、次の各号によって行わなければならない。

- (1) 通信ケーブル相互の接続は、段接続とし、次によって行うものとする。
 - イ 心線の接続は、ひねり接続のあとPEスリーブを用いるか又は絶縁性コネクタを用いて行わなければならない。
 - ロ 架空ケーブルの心線接続は、ひねり接続後はんだ上げを行い、PEスリーブを用いて行わなければならない。
 - ハ ケーブル被覆の接続は、心線接続後切りはぎ部及び接続部にプラスチックテープを巻き付

け、ビニル電線防護カバー、粘着アルミテープなどを用いて防護を行い、ビニルテープを巻き付けて仕上げる。

なお、湿気の多い場所では、ケーブルの成端処理に準じて行うものとする。

- (2) 屋内通信線の接続は、10mm以上ずらせた段接続とする。また、心線の接続は、銅スリーブを 用い、ビニルテープを横巻きの上、半幅重ね巻きとする。ただし、絶縁性のある接続器を使用 して接続する場合は、テープ巻きを要しない。
- (3) 同軸ケーブル及びBS用同軸ケーブルの相互接続及び端末は、原則としてF型接栓を使用する。
- (4) データ回線における心線の接続は、専用のコネクトによるものとする。

9.1.10 電線と機器端子との接続

電線と機器端子との接続は、4.1.19によるほか、次の各号によって行わなければならない。

- (1) 端子板への接続は、原則として出側を右側とする。
- (2) 端子にはんだ上げ接続する場合は、心線を端子に1.5周以上巻き付け、はんだ上げする。
- (3) 端子に挟み込み接続する場合は、必要に応じ座金を使用し、ねじで締め付ける。

9.1.11 電線の色別

電線の色別は、表9.1.2によるものとする。

表9.1.2 電線の色別

配線種別	色別
電気時計	青、(赤又は黒)
拡 声	黒、赤又は黄(白)
	赤(表示栓)、黒(電話線)
火災報知	青(ベル線)、黄又は青(確認ランプ線)
	白 (共通線)
接地線	緑

備考 () 内の色は、マイナス側又は共通側を示す。

9.1.11 端子盤内の配線処理

端子盤内の配線処理は、次の各号によって行わなければならない。

- (1)端子盤内の配線処理は、適当な位置から外被をはぎ取り整然と編出しして端子に接続する。端子盤内のケーブルは、余裕をもたせ無理のない程度に曲げて固定する。外被をはぎ取った部分は、成端処理を行って湿気の侵入を防止する。
- (2) 準幹線又は分岐通信線路のケーブルは、端子板の左(下) 側端子に接続する。
- (3) ジャンパー線の配線処理は、次によって行う。

イ ジャンパー線は、ジャンパーリングを使用して整然と端子板の右(上)側端子に接続する。

ロ ジャンパー線の種別は、表9.1.3によって行う。

表9.1.3 ジャンパー線の種別

種 別	色 別	用 途	心線径	
PVC 2cよりジャンパー線	赤白	電話・データ	0.5㎜以上	
IJ.	黄白	防犯無線	0.65mm "	
PVC 4cよりジャンパー線	赤白黒緑	非常電話	0.5 mm "	
PCM ジャンパー線	2cシールド付	CCTV画像		

- ハ ジャンパー線の色別は、手前側の端子をチップ(T)、他方をリング(R)とし、下記による。
 - a) 電話及びデータは、赤(R)、白(T)とする。
 - b) 防犯無線は、黄(R)、白(T)とする。
 - c) 非常電話は、赤(R)、白(T)、黒(R)、緑(T)とする。
- ニ アルペス形CCPケーブルのアルミテープ、シールド付ジャンパー線のシールド部分等は、端 子板のアース端子に接続して接地する。
- ホ 端子板には線番表を作成し、収容する。

9.1.13 小勢力回路の設置

小勢力回路の設置は、次の各号によって行わなければならない。

- (1)小勢力回路に電気を供給する変圧器は、絶縁変圧器でなければならない。
- (2) 絶縁変圧器の二次短絡電流は、表9.1.4による。ただし、二次側電路に過電流遮断器を設置する場合は、この限りでない。

表9.1.4 小勢力回路の電流

小勢力回路の最大 使用電圧の区分	二次短絡電流	過電流遮断器 の定格電流		
15V 以下	8. 0A	5. 0A		
15Vを超え 30V以下	5. 0A	3. 0A		
30Vを超え 60V以下	3. 0A	1.5A		

9.1.14 電線などの防火区画の貫通

電線などの防火区画の貫通は、4.1.12によって行わなければならない。

9.1.15 弱電流電線と強電流電線との離隔

弱電流電線と強電流電線との離隔は、4.1.14及び4.1.15によって行わなければならない。

9.1.16 地中弱電流電線と地中強電流電線との離隔

地中弱電流電線と地中強電流電線との離隔は、4.1.16によって行わなければならない。

9.1.17 弱電流電線と水道管、ガス管などとの離隔

弱電流電線と水道管、ガス管等とは、直接接触しないように敷設しなければならない。

9.1.18 発熱部との離隔

弱電流電線と発熱部との離隔は、4.1.17によるものとする。

9.1.19 絶縁抵抗

通信線路の絶縁抵抗は、次の各号によるものとする。

(1) 屋内及び屋外通信線路の絶縁抵抗値は、電線相互間及び電線と大地間を250V以上の絶縁抵抗 計で測定して、1回路又は1系統当たり5MΩ以上とする。

なお、機器取付け後の絶縁抵抗値は、1MΩ以上とする。

(2) 架空配線及び地中配線通信線路の絶縁抵抗値は、電線相互間及び電線と大地間を250V以上の 絶縁抵抗計で測定して、1回路又は1系統当たり5MΩ/km以上とする。

なお、機器取付け後の絶縁抵抗値は1MΩ/km以上とする。

第 2 節 金属管配線工事

9.2.1 一 般

金属管配線工事による通信配線は、第4章 第3節 金属管配線工事によるほか、次の各号によって行わなければならない。

- (1) 通信配線の接続は、金属管内で行ってはならない。
- (2) 金属管工事に使用する金属管及びボックスその他付属品は、4.3.1の2によらなければならない。

9.2.2 管の太さの選定

管の太さの選定は、4.3.2によるほか、次の各号によって行わなければならない。

- (1) 電線が通信ケーブルの場合は、表9.2.1~表9.2.4の中から選定しなければならない。
- (2) 通信ケーブルの管内収容数は、1管1条とする。ただし、工事施工上やむを得ない場合にあっては、この限りでないものとする。
- (3) 電線を収容する管の太さは、収容する電線の被覆を含む断面積の総和が管の内部断面積の 25%以下となるよう選定しなければならない。ただし、同軸コードの場合はこの限りではない ものとする。
- (4) PVC屋内線のうちより線を収容する管の太さは、電線の断面積の総和が管の内部断面積の 15%、並列線は20%以下となるように選定する。

表9.2.1 厚鋼電線管の太さの選定

管の太さ(mm)	
心線径(mm) 又は名称 電線の種類 22 28 36 42 54	70
6対市内ケーブル 0.4 1 1 CCP-P, CCP-AP, CPEV等 0.65 1 (1)	
J 0.9 1 1 1	İ
10対市内ケーブル 0.4 1 (1) 0.5 0.65 1 (1)	
J 0.9 1 (1)	
30対市内ケーブル 0.4 1 1 (1) 0.5 1 (1)	
50対市内ケーブル 0.4 1 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
J 0.9 1	
100対市内ケーブル 0.4 () 0.5 0.65 0.9	1
	+ +
5C-2V 2 3	
7C-2V 1 1 3	
10C-2V 1 1 2	
5D-2V 2 3	
8D-2V 1 2 3	
10D-2V 1 1 2 3	

※ ()内は、CCP-APケーブル

表9.2.2 薄鋼電線管の太さの選定

炊の上ナ()								
管の太さ(mm)		19	25	31	39	51	63	75
心線径(mm) 又は名称		19	20	31	39	51	03	75
電線の種類								
6対市内ケーブル	0.4	1	(1)					
CCP-P, CCP-AP,	0. 5 0. 65	1	1					
CPEV等	0.00		1	1				
10対市内ケーブル	0. 3		1	1				
10001111040	0. 5		1					
	0.65		1	(1)				
	0.9			1	(1)			
30対市内ケーブル	0.4			1	(1)			
	0. 5 0. 65			1	(1) 1			
	0.03				1	1		
50対市内ケーブル	0.4			1	(1)	-		
	0.5				1			
l II	0.65					1		
	0.9						1	
100対市内ケーブル	0.4				1	1		
	0. 5 0. 65					1	1	
	0.03						1	1
同軸ケーブル	3C-2V	2	3					
Indiana / / / /	5C-2V	1	2	3				
	7C-2V		1	1	2 1			
	10C-2V 5D-2V	1	2	1 3		3		
	8D-2V 8D-2V	1		1	2			
}	10D-2V			1	1	3		
	100 1.			•	•	Ü		

※ ()内は、CCP-APケーブル

表9.2.3 ねじなし電線管の太さの選定

管の太さ(mm)								
心線径(mm) 又は名称		E19	E25	E31	E39	E51	E63	E75
電線の種類								
6対市内ケーブル	0. 4 0. 5	1 1	(1)					
【CCP-P, CCP-AP, CPEV等	0. 65	1	1					
	0.9		1	(1)				
10対市内ケーブル	0. 4 0. 5		1 1					
	0.65		1	(1)				
	0.9			1	(1)			
30対市内ケーブル	0. 4 0. 5		1	(1)	(1)			
	0.65			1	1			
	0.9					1		
50対市内ケーブル	0. 4 0. 5			1	(1)			
	0.65				1	1		
	0.9						1	
100対市内ケーブル	0. 4 0. 5				1	(1)		
	0.65					1	1	
	0.9							1
同軸ケーブル	3C-2V 5C-2V	2	2	3				
	7C-2V	1	1	2	3			
	10C-2V	1	0	1 3	1	3		
	5D-2V 8D-2V	1	2	1	2			
	10D-2V		1	1	1	3		

※ ()内は、CCP-APケーブル

表9.2.4 アルミニウム電線管の太さの選定

管の太さ(mm)		10	O.F.	0.1	20	F1	CO	7.5
心線径(mm) 又は名称 電線の種類		19	25	31	39	51	63	75
6対市内ケーブル CCP-P, CCP-AP, CPEV等	0. 4 0. 5 0. 65 0. 9	1	1 (1) 1					
10対市内ケーブル	0. 4 0. 5 0. 65 0. 9	1 1	(1) (1) 1	1				
30対市内ケーブル	0. 4 0. 5 0. 65 0. 9		1	(1) 1 1	(1)	1		
50対市内ケーブル	0. 4 0. 5 0. 65 0. 9			1	1 1	(1)	1	
100対市内ケーブル	0. 4 0. 5 0. 65 0. 9				1	1	1	1
同軸ケーブル	3C-2V 5C-2V 7C-2V 10C-2V 5D-2V	2 1 1	2 1 3	2 1	3 2	3		
	8D-2V 10D-2V		1	1 1	2 1	3		

※ ()内は、CCP-APケーブル

9.2.3 いんぺい配管の敷設

いんぺい配管の敷設は、4.3.3に準じて行わなければならない。

9.2.4 露出配管の敷設

露出配管の敷設は、4.3.3の(1)~(7)及び4.3.4に準じて行わなければならない。

9.2.5 メタルラス張り壁などの木造造営物における配管

メタルラス張り壁などの木造造営物における配管の敷設は、4.3.5に準じて行わなければならない。

9.2.6 位置ボックス、ジョイントボックスなどの設置

位置ボックス、ジョイントボックスなどは、4.3.60(3) \sim (9) によるほか、次の各号によって行わなければならない。

- (1) 機器の取付位置には位置ボックスを設け、塗しろカバー及びプレートを取り付ける。ただし、位置ボックスが機器等によりいんぺいされる場合にあっては、プレートを取り付けなくてよいものとする。
- (2) 位置ボックス、ジョイントボックスの使用区分は表9.2.5及び表9.2.6に示されるボックス 以上のものとしなければならない。

なお、取付場所の状況により、これらによれない場合にあっては、同容積以上のボックスによるものとする。

- (3) プレートには、容易にはく離しない方法によって、配線の用途種別などを表示する。ただ し、機器を実装している場合及び床付プレートにあっては、用途種別表示を行わなくともよい。
- (4) 金属配管線からケーブル配線に移行する箇所には、ジョイントボックスを設置しなければならない。
- (5) 重量のある機器を吊り下げて取り付ける場合は、インサート、フィクスチュアスタッド又はボルトなどによって支持しなければならない。

表9.2.5 いんぺい配管の位置ボックス及びジョイントボックス使用区分

	取付位置	配管状況	ボックスの種別		
		(22)又は(25)以下の配管4本以下	中形四角コンクリートボック ス54		
	天井スラブ内	(22)又は(25)以下の配管5本以下	大形四角コンクリートボック		
		(28)又は(31)以下の配管4本以下	ス54		
		(22)又は(25)以下の配管2本以下	中形四角アウトレットボック ス54		
	壁掛形表示器及び 埋込型ブザー	(22)又は(25)以下の配管4本以下	大形四角アウトレットボック		
天井		(28)又は(31)以下の配管2本以下	ス54		
井スラブ以外	押しボタンスイッチ、音量調節器及び	スイッチ1個 (連用スイッチの場合は 3個以下) 、音量調節器1個又は試験 器2個以下	1個用スイッチボックス又は 中形四角アウトレットボック ス44		
(床	スポット形感知器用試験器	スイッチ2個 (連用スイッチの場合は 6個以下) 、音量調節器2個又は試験 器5個以下	2個用スイッチボックス又は 中形四角アウトレットボック ス44		
を含む。)	上記以外の位置ボックスみがごっくい。	(22)又は(25)以下の配管4本以下	中形四角アウトレットボック ス54 (柱、壁に取り付ける場 合は44)		
	クス及びジョイント ボックス	(22)又は(25)以下の配管5本以下	大形四角アウトレットボック		
		(28)又は(31)以下の配管4本以下	ス54		

表9.2.6 露出配管の位置ボックス及びジョイントボックス使用区分

用 途	配管状況	ボックスの種別		
位置ボックス及び	(22)又は(25)以下の配管4本以下	丸形露出ボックス (直径89mm)		
ジョイントボックス	(28)又は(31)以下の配管4本以下	丸形露出ボックス (直径100mm)		
押ギカンフノ・・・・ 立具	スイッチ1個 (連用スイッチの場合は 3個以下) 音量調節器1個又は試験器2 個以下	露出1個用スイッチボックス		
押ボタンスイッチ、音量 調節器及びスポット形 感知器用試験器	スイッチ2個(連用スイッチの場合は 6個以下)音量調節器2個又は試験器5 個以下	露出2個用スイッチボックス		
	上記以外	スイッチなどの個数に適合し たスイッチボタン		

9.2.7 管の接続

管の接続は、4.3.7の(1)~(3)及び(6)に準じて行わなければならない。

9.2.8 配管の養生清掃

配管の養生及び清掃は、4.3.8に準じて行わなければならない。

9.2.9 通 線

通線は、4.3.9に準じて行わなければならない。ただし、垂直に敷設する管路内の電線が通信ケー

ブルの場合は、4.3.9の(3)にかかわらず、12m以下の間隔でボックス内において支持しなければならない。

第 3 節 合成樹脂管配線工事

9.3.1 一 般

合成樹脂管工事による通信配線は、第4章 第4節 合成樹脂管配線工事によるほか、次の各号によって行わなければならない。

- (1) 通信配線の接続は、合成樹脂管内で行ってはならない。
- (2) 合成樹脂管配線は、重量物の圧力又は著しい機械的衝撃を受ける場所には敷設してはならない。ただし、適当な防護装置を施す場合にあっては、この限りではないものとする。
- (3) 合成樹脂管工事に使用する合成樹脂管及びボックスその他付属品は、4.4.1の2によるものとする。

9.3.2 管の太さの選定

管の太さの選定は、4.4.2及び9.2.2の(2)、(3)、(4)によるほか、電線が通信ケーブルである場合は、表9.3.1によるものとする。

表9.3.1 合成樹脂管の太さの選定

管の太さ(mm)								
心線径(mm) 又は名称			22	28	36	42	54	70
電線の種類								
6対市内ケーブル	0.4		1					
CCP-P, CCP-AP,	0. 5 0. 65		1 1					
CPEV等	0.9			1				
10対市内ケーブル	0. 4 0. 5		1 1					
	0. 5		1	1				
	0.9			1	(1)			
20対市内ケーブル	0.4			1 1	(1)			
	0. 5 0. 65			1	(1) 1			
	0.9						1	
50対市内ケーブル	0.4				1			
	0. 65				1	1	(1)	
[0.9						(-/	1
100対市内ケーブル	0.4				1	(1)	1	
	0. 5 0. 65						$\begin{array}{c c} 1 \\ 1 \end{array}$	(1)
	0.9						1	1
同軸ケーブル	3C-2V		3	2				
	5C-2V 7C-2V		2 1	3 1	$\begin{vmatrix} 2 \end{vmatrix}$	3		
	10C-2V		_	1	2 1	3 2	3	
	5D-2V		2	3				
	8D-2V 10D-2V			1	2 1	3 2	3	
	100 21			1	1	4	J	

※ () 内は、CCP-APケーブル

9.3.3 いんぺい配管の敷設

いんぺい配管の敷設は、4.3.3の(1)、(3)、(4)、(5)及び4.4.3に準じて行わなければならない。

9.3.4 露出配管の敷設

露出配管の敷設は、4.3.4の(1)から(4)までの規定及び4.4.4に準じて行わなければならない。

9.3.5 位置ボックス、ジョイントボックスなどの設置

位置ボックス、ジョイントボックスなどは、4.3.6に準じて行わなければならない。ただし、表4.3.8 の丸形露出ボックスの直径は、89mmを87mmと読み代えるものとする。

9.3.6 管の接続

管の接続は、4.4.6に準じて行わなければならない。

9.3.7 メタルラス張り壁などの木造造営物における配管

メタルラス張り壁などの木造造営物における配管の敷設は、4.3.5に準じて行わなければならない。

9.3.8 管の養生清掃

管の養生及び清掃は、4.3.8に準じて行わなければならない。

9.3.9 通線

通線は、4.3.9及び9.2.9に準じて行わなければならない。

第 4 節 可とう電線管配管工事

9.4.1 一 般

可とう電線管工事による通信配線は、第4章 第5節 電線管配線工事によるほか、次の各号によって行わなければならない。

- (1) 通信配線は、可とう電線管内では接続してはならない。
- (2) 可とう電線管配線は、重量物の圧力又は著しい機械的衝撃を受ける場所には、敷設してはならない。ただし、適当な防護装置を施す場合は、この限りでないものとする。
- (3) 可とう電線管工事に使用する可とう電線管は、二種金属可とう電線管でなければならない。
- (4) 可とう電線管工事に使用する可とう電線管及びボックスその他付属品は、4.5.1に2によるものとする。

9.4.2 管の太さの選定

管の太さの選定は、4.5.2及び9.2.2の(2)、(3)、(4)によるほか、電線が通信ケーブルである場合は、表9.4.1によるものとする。

表9.4.1 可とう電線管の太さの選定

管の太さ(mm)								
心線径(mm) 又は名称			24	30	38	50	63	76
電線の種類								
6対市内ケーブル	0. 4 0. 5		1					
CCP-P, CCP-AP,	0. 5 0. 65		1 1					
【CPEV等	0. 9		1	(1)				
こ10対市内ケーブル	0.4		1					
	0. 5 0. 65		1 1	(1)				
	0.03		1	1	(1)			
30対市内ケーブル	0.4		1	(1)				
	0.5			1	(1)			
	0. 65 0. 9				1	1		
50対市内ケーブル	0.4			1	(1)			
	0. 5				1			
	0. 65 0. 9					1	1	
100 特古中 たーブル	0. 9				1		1	
100対市内ケーブル	0. 5				1	1		
	0.65						1	
	0.9							1
同軸ケーブル	3C-2V 5C-2V		$\frac{4}{2}$	3				
	7C-2V		1	2	3			
	10C-2V			1	3 2	3		
	5D-2V		2					
	8D-2V		1	1	2	9		
	10D-2V			1	1	3		

※ ()内は、CCP-APケーブル

9.4.3 管の敷設

可とう電線管の敷設は、4.5.3の(2)、(3)、(5)、(6)によるほか、次の各号によって行わなければならない。

- (1) 可とう電線管及び付属品相互は、堅固に接続しなければならない。
- (2) 可とう電線管を他の金属管等と接続するときは、表9.4.2による適合した太さのものとコネクタ、カップリングによって堅固に接続しなければならない。

表9.4.2 可とう電線管と金属管との適合

可とう電線管	適合する金属製電線管の種類					
の種類	薄 鋼	厚 鋼				
17	19	16				
24	25	22				
30	31	28				
38	39	36				
50	51	42				
63	63	54				
76	75	70				

第 5 節 金属線 の配線工事

9.5.1 一 般

金属線び工事による通信配線は、第4章 第7節 金属線び配線工事によるほか、次の各号によって行わなければならない。

- (1) 通信配線は、金属線の内では接続してはならない。ただし、電気用品取締法の適用を受ける 二種金属線のを使用し、かつ、次によって行う場合にあっては、この限りではないものとする。
 - イ 電線を分岐する場合
 - ロ 接続線が容易に点検できるようにした場合
 - ハ 線ぴ内の電線を外部に引き出す部分は金属管工事、可とう電線管工事、合成樹脂管工事又はケーブル工事によることとし、線ぴの貫通部分で電線が損傷しないように処置した場合
- (2) 金属線び工事に使用する金属線び及びボックスその他付属品は、4.7.1の2に準じたものでなければならない。

9.5.2 線ぴの敷設

金属線ぴの敷設は、4.7.2に準じて行わなければならない。

9.5.3 線ぴの接続

金属線ぴの接続及び金属線ぴと電線管との接続は、堅固に行わなければならない。

9.5.4 線ぴ内の配線

金属線の内配線は、4.7.4に準じて行わなければならない。

第 6 節 合成樹脂線 の配線工事

9.6.1 一 般

合成樹脂線ぴ工事による通信配線は、第4章 第8節 合成樹脂線ぴ配線工事によるほか、次の各号によって行わなければならない。

- (1) 通信配線は、合成樹脂線の内では接続してはならない。ただし、電気用品取締法の適用を受ける合成樹脂製ジョイントボックスを使用する場合は、この限りではないものとする。
- (2) 合成樹脂線ぴ工事に使用する合成樹脂線ぴ及びボックスその他付属品は、電気用品取締法の適用を受けたものでなければならない。

9.6.2 線ぴの敷設

合成樹脂線ぴの敷設は、4.8.2に準じて行わなければならない。

9.6.3 線ぴの接続

合成樹脂線ぴの接続は、4.8.3に準じて行わなければならない。

9.6.4 線ぴ内の配線

合成樹脂線の内配線は、4.8.4に準じて行わなければならない。

第7節 フロアダクト配線工事

9.7.1 一 般

フロアダクト工事による通信配線は、第4章 第9節 フロアダクト配線工事によるほか、次の各号 によって行わなければならない。

- (1) 通信配線は、フロアダクト内では接続してはならない。ただし、電線を分岐する場合において、その接続点が容易に点検できるときはこの限りではないものとする。
- (2) フロアダクト工事に使用するフロアダクト及びボックスその他付属品は4.9.1の2に準じた ものでなければならない。

9.7.2 ダクトの敷設

フロアダクトの敷設は、4.9.2に準じて行わなければならない。

9.7.3 ダクトの接続

フロアダクトの接続は、次の各号によって行わなければならない。

- (1) ダクト相互、ダクトとジャンクションボックス及び金属管とジャンクションボックス等との接続は、堅固に、かつ、電気的に接続させなければならない。
- (2) ダクト相互の接続は、ダクトカップリングによって行わなければならない。
- (3) ダクトと金属管との接続は、ジャンクションボックス、エンドコネクタを用いて行わなければならない。

9.7.4 インサート

インサートは、4.9.4に準じたものとしなければならない。

9.7.5 混触防止

弱電流電線と強電流電線との混触防止は、4.9.5に準じて行わなければならない。

9.7.6 ダクトの太さの選定

ダクトの太さの選定は、次の各号によって行わなければならない。

- (1) 弱電流電線を収容するダクトの大きさは、収容する屋内線の被覆を含む断面積の総和がダクト内部断面積の20%以下となるように選定する。
- (2) PVC屋内線の内2コより線を収容するダクトの太さは、電線の被覆を含む断面積の総和が ダクト内部断面積の15%以下となるように選定する。また、並列線は20%以下とする。

第8節 セルラダクト配線工事

9.8.1 一 般

セルラダクト工事による通信配線は、第4章10節セルラダクト配線工事によるほか、次の各号によって行わなければならない。

- (1) 通信配線は、セルラダクト内では接続してはならない。ただし、電線を分岐する場合において、その接続点が容易に点検できるときは、この限りではないものとする。
- (2) セルラダクト内の電線を外部に引き出す場合は、当該セルラダクトの貫通部分で電線が損傷するおそれがないように処置しなければならない。
- (3) セルラダクト工事に使用するセルラダクト及び付属品は、4.10.1の2に準じたものとしなければならない。

9.8.2 ダクトの敷設

セルラダクトの敷設は、 $4.10.20(1) \sim (3)$ によるほか、次によって行う。

ダクト相互、ダクト造営材の金属構造体、付属品及びダクトに接続する金属体とは堅牢に、かつ、 電気的に接続しなければならない。

9.8.3 ダクト内の配線

セルラダクト内の配線は、4.10.3に準じて行わなければならない。

9.8.4 接 地

弱電流電線と強電流電線とを同一のセルラダクト内に収容する場合は、C種接地工事を行わなければならない。

第9節 金属ダクト配線工事

9.9.1 一 般

金属ダクト工事による通信配線は、第4章 第11節 金属ダクト配線工事によるほか、次の各号によって行わなければならない。

- (1) 通信配線は、金属ダクト内では接続してはならない。ただし、電線を分岐する場合において、 その接続点が容易に点検できるときは、この限りではないものとする。
- (2) 金属ダクト内には、電線の被覆を損傷するおそれのあるものを収めてはならない。
- (3) 金属ダクト工事に使用する金属ダクトは、4.11.1の2に準じたものとしなければならない。

9.9.2 ダクトの敷設

金属ダクトの敷設は、4.11.2に準じて行わなければならない。

9.9.3 ダクトの接続

ダクト相互及びダクトと端子盤、プルボックスなどとの間は、突き合わせを完全にし、ボルト類によって堅固に、かつ、電気的に接続しなければならない。

9.9.4 ダクト内の配線

金属ダクト内の配線は、4.11.4に準じて行わなければならない。

第 10 節 ケーブル配線工事

9.10.1 一 般

ケーブル工事による通信配線は、次の各号によって行わなければならない。

- (1) 通信ケーブルは、9.1.3に準じたものとする。ただし、漏洩同軸ケーブル及び光ファイバーケーブルは除くものとする。
- (2) 重量物の圧力又は著しい機械的衝撃を受けるおそれのある箇所では、通信ケーブルに適当な 防護装置を設けなければならない。

9.10.2 ケーブルの敷設

通信ケーブルの敷設は、4.13.20(1)、(3) \sim (5) によるほか、次の各号によって行わなければならない。

- (1) いんぺい配線工事において、通信ケーブルに張力が加わらないように敷設する場合にあっては、ころがし配線によって行うことができる。
- (2) 露出配線工事は、原則として天井下端又は幅木上端などに沿って行われなければならない。
- (3) ケーブルを曲げる場合は、被覆が損傷しないように十分注意して行い、その屈曲半径は、仕上がり外径の6倍以上としなければならない。

9.10.3 ケーブルの接続

通信ケーブルの接続は、4.13.3及び9.1.9に準じて行わなければならない。

9.10.4 ケーブルの造営材貫通

通信ケーブルが造営材を貫通する場合は、4.13.4に準じて行わなければならない。

第 11 節 漏洩同軸ケーブル配線工事

9.11.1 一 般

漏洩同軸ケーブル工事による通信配線は、次の各号によって行わなければならない。

- (1) 漏洩同軸ケーブルは、収容する各種通信システムの周波数帯域をカバーした自己支持型耐熱漏洩同軸ケーブルを使用しなければならない。
- (2) 当社とトンネル内不感知対策事業者とのトンネル通信兼用工作物となる場合の漏洩同軸ケ

- ーブルは超広帯域のものとし、それぞれの仕様を満足するものでなければならない。
- (3) 漏洩同軸ケーブル配線工事では、収容する各種通信システムの特性に応じた回線レベルダイヤグラムを設定するために、グレーディング又は中間増幅器の接続が行えるよう処置しなければならない。
- (4) 漏洩同軸ケーブル配線工事では、発射された電波がトンネル外部に伝搬しないように処置しなければならない。

9.11.2 ケーブルの敷設

漏洩同軸ケーブルの敷設は、次の各号によって行わなければならない。

- (1) 漏洩同軸ケーブルの敷設場所は、トンネル内の壁面部上端又は天井部とし、道路の建築限界を確保した位置としなければならない。
- (2) 漏洩同軸ケーブルの敷設は、トンネル内の壁面部上端又は天井部に設置した吊架金物及び引留金具によってメッセンジャーワイヤーをちょう架し、敷設時においては、ケーブルに引張り張力が加わらないようにしなければならない。
- (3) 漏洩同軸ケーブルを敷設する場合は、壁面部上端又は天井部から150mm程度離し、スロット の向きに注意して行い、各種通信システムにおける結合損失が規定値を確保できるようにしな ければならない。
- (4) 漏洩同軸ケーブルは、トンネルの形状、区間等を考慮し、敷設スパンを決定しなければならない。また、スパンごとに吊線部末端を引留金具に引留めるとともに、途中の支持間隔は5m以内としなければならない。
- (5) 漏洩同軸ケーブルの敷設は、トンネルに沿って直線状に行う。ただし、敷設工事中においてケーブルを曲げる場合は、被覆が損傷しないように十分注意して行い、その屈曲半径は仕上がり外径の15倍以上としなければならない。

9.11.3 ケーブルの接続

接続部分の漏洩同軸ケーブルの接続は全てコネクタを使用し、かつ、防水処理を施さなければならない。

なお、中間増幅器を挿入する場合も同様な措置を講じなければならない。

9.11.4 ケーブルの終端

漏洩同軸ケーブルの終端部は、終端抵抗を挿入し、各種通信システムの使用周波数における電圧 定在波比が規定値以下となるように処置しなければならない。

9.11.5 共用器の設置

漏洩同軸ケーブルの中間部には、各種通信システムを収容させるために共用器を設置する。複数 以上の共用器を設置する場合は、できるだけ同一の共用器収納箱等に収めて行い、漏洩同軸ケーブ ルの接続箇所数を増加させないようにしなければならない。

第 12 節 光ファイバーケーブル配線工事

9.12.1 一 般

光ファイバーケーブル工事による通信配線は、第10節 ケーブル配線工事によるほか、次の各号に よって行わなければならない。

- (1) 光ファイバーケーブル配線工事に当たっては、事前に敷設場所の状態を十分調査し、光ファイバーケーブルの敷設スパンをできる限り長いスパンにて行い、途中接続の箇所数の低減に努めなければならない。
- (2) 光ファイバーケーブル配線工事に使用する光ファイバーケーブルは、グレーデッド型マルチモード(GI型)又はシングルモード(SM型)のものとする。
- (3) 電気通信兼用工作物となる区間の光ファイバーケーブルは、当社及びKDDIの規定した仕様の ガス封入システムのものとし、当社の専用区間との境界点には、ガスダム装置を設置して区分 させる。
- (4) 重量物の圧力又は著しい機械的衝撃を受けるおそれのある箇所では、光ファイバーケーブル に適当な防護装置を設けなければならない。
- (5) ケーブルラックに光ファイバーケーブルを収容する場合は、電気通信兼用工作物となる区間 のものは、あらかじめ指定された位置に敷設し、必要に応じて防護カバーで覆い、当社の専用 区間のものにあっても、通信スペースの隅とし、できるだけ損傷を受けにくい位置としなけれ ばならない。

9.12.2 ケーブルの敷設

光ファイバーケーブルの敷設は、次の各号によって行わなければならない。

- (1) ケーブルのテンションメンバーの引張力は、ケーブル敷設スパンの抗張力に見合ったものとしなければならない。
- (2) ケーブルの延線は、プーリングアイ又はケーブルネットを使用して引張端から行う。
- (3) ケーブルを曲げる場合は、被覆を損傷しないように注意して行い、その屈曲半径は、仕上がり外径の10倍以上とする。

9.12.3 ケーブルの接続

光ファイバーケーブルの接続は、次の各号によって行わなければならない。

- (1) ケーブル端の接続部は、心線の接続に必要な長さだけのケーブルの外被及び介在物を除去し、 更に被覆及びシリコンコーティングを被覆除去装置を使用して除去切断した後に融着装置によって接続する。
- (2) テンションメンバー同士の接続は、金属スリーブで堅固に接続するとともに、金属製しゃへいテープがある場合は、金属製しゃへいテープも堅固に、かつ、電気的に接続しなければなら

ない。

- (3) 光ファイバーケーブルの心線の接続に当たっては、あらかじめ敷設区間の伝送特性を測定しなければならない。
- (4) 光ファイバーケーブル心線の融着接続は、微細な作業となるため、作業場所の環境保全を考慮し、湿度の高い場所は避け、作業に有害な振動やじんあいに対する防護処理を講じて行わなければならない。
- (5) ケーブルの接続部は、樹脂製又は金属製の保護スリーブによって覆い、防水処置を講じなければならない。
- (6) 光ファイバーケーブルの心線の接続に当たっては、所定の心線色別表示が一致するように行わなければならない。

9.12.4 ケーブルとコードとの接続

光ファイバーケーブルと光ファイバーコードとの接続は、樹脂製又は金属製のボックス内で行う ものとする。光ファイバーコードと接続する部分は、保護管で保護し、ボックス内で整然と固定し なければならない。

第 13 節 通信用フラットケーブル配線工事

9.13.1 一 般

通信用フラットケーブル工事による通信配線は、第4章 第18節 平形保護層配線工事に準じて行わなければならない。

9.13.2 ケーブルの敷設

通信用フラットケーブルの敷設は、4.18.2に準じて行うほか、次の各号によって行わなければならない。

- (1) フラット型同軸ケーブルなどの曲げ半径は、許容曲げ半径以上としなければならない。
- (2) 床面への固定は、粘着テープを使用し、1m以下の間隔で行わなければならない。
- (3) 折り曲げ部分は、防護材として鋼板を置き、粘着テープによって固定しなければならない。

9.13.3 ケーブル相互及び機器との接続

通信用フラットケーブル相互及び機器との接続は、次の各号によって行わなければならない。

- (1) 通信用フラットケーブル相互の接続及び分岐は、専用のコネクタ及び工具を使用して行わなければならない。
- (2) 通信用フラットケーブルと機器との接続は、必要に応じて端子板等を取り付けて行わなければならない。

第 14 節 通信用ケーブルラック配線工事

9.14.1 一 般

ケーブルラック工事による通信配線は、第4章 第16節 ケーブルラック配線工事によるほか、次の 各号によって行わなければならない。

- (1) ケーブルラックは、通信配線専用ラック又は高圧配線及び低圧配線との併用ラックとする。
- (2) 通信用ケーブルラックの敷設場所は、建物内及び高速道路高架橋桁間、トンネル内の建築限 界内の場所とする。

なお、高速道路高架橋桁間に敷設する場合は、点検通路に併設することを原則とする。

9.14.2 ケーブルラックの敷設

ケーブルラックの敷設は、4.16.2の(1)~(4)、(6)によるほか、次の各号によって行わなければならない。

- (1) 建物内に敷設するケーブルラックは、天井からの吊り金物等によって支持し、機器の配置に 適合した所定の高さの位置に水平に設置する。
- (2) 高速道路高架橋桁間にケーブルラックを敷設する場合は、桁間に設置した支持金物に所定の取付金具によって固定して敷設する。

なお、高架橋の伸縮接続箇所は、ケーブルラックの接続も伸縮継手によって行い、高架橋の伸縮に対応した処置を講じなければならない。

9.14.3 ケーブルの敷設

ケーブルラックに通信ケーブルを敷設する場合は、4.16.3の(1)、(4)によるほか、次の各号によって行わなければならない。

- (1) 高速道路高架橋桁間、トンネル内に設置したケーブルラックに通信ケーブルを敷設する場合は、次によって行うものとする。
 - イ ケーブルの搬入は、搬入場所の状態に応じた方法にて行う。
 - ロ ケーブルラックにケーブルを敷設する場合、必要に応じコロ等の延線補助材を使用し、過 大な引張力がケーブルに加わらないように処置しなければならない。
 - ハ ケーブルは、各回線ごとにひとまとめにして子桁の上に整然と配列し、間隔10m以下ごとに 5mm以上のクレモナ等によりその被覆を損傷しないように堅固に固定しなければならない。
- (1) ラック上で通信ケーブルを節即する場合は、4.13.3及び9.10.3に準じて行わなければならない。

なお、ラック上で複数の通信ケーブルを接続する場合は、接続に要するスペースを確保させる ために、各回線を同一場所とせず相互に離した位置で接続しなければならない。

(2) 建物内に設置したケーブルラックに通信ケーブルを敷設する場合は、3段までの俵積みが行 えるものとする。ただし、高速道路高架橋桁間、トンネル内に設置したケーブルラックに通信 ケーブルを敷設する場合は、親桁及び隔壁の高さを超えてはならない。

9.14.4 混触防止

ケーブルラックに配線する通信ケーブルは、他の低圧配線、管灯経路の配線又は金属製水管、ガス管若しくはこれに類するものと接近又は交差する場合は、15cm以上隔離するか、又はケーブル相互間に耐火性の隔壁を設置しなければならない。

9.14.5 ケーブルラックの防火壁貫通

ケーブルラックが防火壁を貫通する場合は、4.1.12の4に準じて行わなければならない。

第 15 節 床上配線工事

9.15.1 一 般

床上配線工事による通信配線は、4.18.1の(2)及び(3)によるほか、次の各号によって行わなければならない。

- (1) 床上配線工事に使用する電線は、屋内用通信電線又は通信ケーブルとしなければならない。
- (2) 床上配線工事は、電線をワイヤプロテクタに収容するか、又はカーペット下に敷設して行わなければならない。

9.15.2 敷設

床上配線の敷設は、次の各号によって行わなければならない。

- (1) 床上配線は、ワイヤプロテクタを使用し、機器や机の配置を考慮し、損傷を受けるおそれのないような位置に敷設する。
- (2) ワイヤプロテクタの大きさは、収容する電線の太さ及び条数に適合したものとしなければならない。
- (3) ワイヤプロテクタは、原則として粘着テープ等によって床面に固定しなければならない。
- (4) ワイヤプロテクタから電線を引き出す箇所は、電線の被覆を損傷するおそれの内容に適当な防護処置を講じなければならない。
- (5) カーペット敷の場合は、カーペットの下をころがし配線とする。

第 16 節 架空配線工事

9.16.1 一 般

架空配線工事による通信配線は、第5章 第3節 各電線路工事に準じて行うものとする。

9.16.2 架空弱電流電線の高さ

架空弱電流電線の高さは、表5.3.1の低圧架空電線の高さに準用するものとする。

9.16.3 架空弱電流電線と低高圧架空電線との接近または交さ

架空弱電流電線と低高圧架空電線とが接近又は交さする場合は、5.3.4に準じて行うものとする。

9.16.4 架空弱電流電線と低高圧架空電線との共架

架空弱電流電線と低高圧架空電線とを同一の支持物に設置した場合の離隔距離は、表9.15.1によるものとする。

表9.15.1 架空弱電流電線と低高圧架空電線との離隔距離

低高圧	架空電線の種類	架空弱電流電線の種類	離隔距離
低圧用の絶縁電線		裸線等	0.75m
低圧	又は多心型電線	絶縁電線又は通信用ケーブル	0.75m
架空電線	高圧絶縁電線、特別裸線等高圧絶縁電線又は	裸線等	0.75m
	同圧肥豚 电脉 又は ケーブル	絶縁電線又は通信用ケーブル	0.3m
高 圧	高圧絶縁電線		1.5m
架空電線	ケーブル		0.5m

9.16.5 架空弱電流電線電線との接近または交さ

架空弱電流電線と特別高圧架空電線とが接近又は交さする場合の離隔距離は、と特別高圧架空表 9.15.2によるものとする。

表9.15.2 架空弱電流電線と特別高圧架空電線との離隔距離

特別高圧の電圧と電線の区分	離隔距離					
60kVを超える電線	2mに使用電圧が60kVを超える 10kV 又 は そ の 端 数 ご と に 0.12mを加えた値					
60kV以下の裸線	2 m					
" 絶縁電線	1 m					
<i>"</i> ケーブル	0.5m					

9.16.6 架空弱電流電線と特別高圧架空電線との共架

架空弱電流電線と特別高圧架空電線とを同一の支持材に施設する場合は、次の各号によって行わなければならない。

- (1) 架空弱電流電線と特別高圧架空電線との離隔距離は、2m以上とする。ただし、特別高圧架空電線がケーブルである場合は、0.5m以上とすることができる。
- (1) 架空弱電流電線は、特別高圧架空電線がケーブルである場合を除き、金属製の電気的遮へい層を有する通信用ケーブルを使用しなければならない。

9.16.7 建 柱

架空弱電流電線を支持するための電柱の建柱は、5.3.10に準じて行うものとする。

9.16.8 丸形ケーブルの架線

丸形ケーブル(非自己支持型ケーブル)を架空配線する場合は、吊線にて支持し、次の各号によって行わなければならない。

- (1) 吊線は、架設ケーブルの重量及び風圧荷重に十分耐える強度を持った22mm2以上の亜鉛めっき鋼より線としなければならない。
- (2) 吊線を電柱に支持する場合は、真棒又は自在バンド等の吊架金物を使用して行わなければならない。
- (3) 丸形ケーブルは、吊線を架設した後、ビニルバンド又はラッシングロッド等のハンガで0.5m 以下の間隔で吊り下げる。
- (4) ケーブルが、電柱などと接触のおそれのある箇所では、スパイラルリーブにて行い、又電柱間での架空配線が樹木、建物及び電力線等と接触するおそれのある場合は、ケーブルカバーによって防護しなければならない。

9.16.9 SSケーブルの架線

SSケーブル(自己支持形ケーブル)を架空配線する場合は、9.16.8に準じるほか、次の各号によって行わなければならない。

- (1) SSケーブルを架線する場合は、その柱間において約10mごとに1回の割合で捻回を入れ、風 圧によって生じるケーブルの動揺を防止しなければならない。
- (2) 吊線は、ケーブルと一体構造とし、架設ケーブルの重量及び風圧荷重に十分耐える強度を有する亜鉛めっき鋼より線としなければならない。

9.16.10 ケーブルの接続

ケーブルの接続は、4.13.3、9.1.9によるほか、電柱に接近した箇所で行い、接続部の両端は、ビニルバンド等によって架線に固定しなければならない。

9.16.11 吊線の接続

吊線の接続は、次の各号によって行わなければならない。

- (1) 直線部の接続は、巻付けグリップ等を使用して堅固に、かつ、電気的に接続する。
- (2) 両方向引留箇所、分岐柱及び柱間の分岐箇所等においては、太さ2mmの600Vビニル電線によって、吊線とケーブル外被相互を電気的に接続しなければならない。

9.16.12 吊線とケーブル

ケーブルの引上柱、端末柱及び500mを超える場合で、300m~500m毎のケーブル接続点等では、2 mmの600Vビニル電線によって、吊線とケーブル外被相互を電気的に接続しなければならない。

9.16.13 接 地

吊線と外被との接続箇所は、第9章 第18節 通信用接地工事に準じた接地工事を行わなければならない。

第 17 節 地中通信配線工事

9.17.1 一 般

地中通信配線工事による通信配線は、第5章 第5節 地中電線路工事に準じて行う。なお、地中通信配線工事に使用する電線は、通信ケーブルとする。

9.17.2 管路引入れ式地中通信配線

地中通信配線を管路引入れ式において行う場合は、5.5.3に準じて行うものとする。

9.17.3 暗きょ式地中通信配線

地中通信配線を暗きょ式において行う場合は、5.5.4に準じて行うものとする。

9.17.4 直接埋設式地中通信配線

地中通信配線を直接埋設式において行う場合は、5.5.5に準じて行うものとする。

9.17.5 地中弱電流電線と他の地中電線との離隔

地中弱電流電線と他の地中電線との離隔は、5.5.6の2によるものとする。

9.17.6 ハンドホール及びマンホール

地中通信配線工事に使用するハンドホール及びマンホールは、5.5.7に準じたものとする。

9.17.7 ケーブルの敷設

地中通信配線工事におけるケーブルの敷設は、5.5.9の(1)から(7)間での規定に準じて行わなければならない。

9.17.8 掘削及び埋戻し

掘削及び埋戻しは、5.5.10に準じて行わなければならない。

第 18 節 通信用接地工事

9.18.1 一 般

通信用接地工事は、通信機器用直流電流の陽極接地及び各種保安装置の大地側に行う接地工事である。

9.18.2 通信接地の種別

通信用接地工事の種別は、表9.17.1によるものとする。

表9.17.1 通信接地の種別

接地を施す機器		接地抵抗值	接地線の太さ
電話交換	200回線以下	10Ω以下	14 mm ² 以上
機用直流 電源装置	200回線を超え 1000回線以下	6 <i>"</i>	14 "
(陽極) 1000回線を超えるもの		4 "	14 "
本配線盤の保安装置		10 "	2.0 mm
架空引込口の保安器		100 "	2.0 "
吊線、保護網各種電源装置		100 "	2.0 "
アンテナ用保安器		100 "	2.0 "
機器の鉄台、外箱		100 "	2.0 "

9.18.3 接地線

接地線は緑色のビニル電線とし、その太さは表9.17.1による。

9.18.4 接地工事

接地工事は、第6章 接地工事によるほか、次によるものとする。

(1) 接地極及び裸導線の地中部分は、原則として避雷設備用接地極及びその裸導線の地中部分とは5m以上、他の接地極及び裸導線の地中部分とは3m以上離して埋設しなければならない。

第 19 節 電話交換機設備工事

9.19.1 一 般

電話交換機設備工事は、加入者用自家用交換機設備及び構内用交換機設備としての交換機、局線 中継台、本配線盤及び電源装置に係わる装置据付工事、装置間配線工事及び装置調整工事で宛て、 次の各号によって行わなければならない。

- (1) 電気通信回線設備に接続する端末機器は、(財)電気通信端末機器審査協会の認定を受けた旨 の表示があるものでなければならない。
- (2) 電話交換機設備の各種機器の配置は、交換機室及び通信機室の大きさ、形状等を考慮し、工事上、保守上及び操作上に支障とならないような間隔を確保しなければならない。

9.19.2 装置の据付け

1 交換機、局線中継台、本配線盤及び電源装置等は、耐震を考慮し、所定の位置に堅固に据付け なければならない。

- 2 キャビネットの据付けは、次の各号によって行わなければならない。
 - (1) キャビネット裏面と壁面との間隔が1.7m以下の場合は、キャビネット上部を壁面に固定する ものとし、1.7mを超える場合は天井又は架上ストラクチャに固定しなければならない。
 - (2) 天井又は架上ストラクチャへの固定は、等辺山形鋼又は十分な強度を有するボルトを使用して行わなければならない。

9.19.3 局線中継台などの据付け

- 1 局線中継台、タイプライタ、保守用コンソール等は、床に堅固に据付ける。 ただし、卓上型のものは机上に置き、移動しないように処置しなければならない。
- 2 夜間切替電源箱を設ける場合は、交換機室の壁面に据付けるものとする。
- 3 ケーブル変向台には、ケーブル支持金物等を設けるものとする。

9.19.4 本配線盤などの据付け

- 1 壁掛キャビネット型の本配線盤は、壁面等に固定するものとする。
- 2 自立フレーム片面型及び両面型の本配線盤は、床面に固定するものとする。
- 3 プラットホームは、堅木又は合板製のものとし、ケーブル成端又は配線の整理を行うのに十分 な高さを有するものとする。また、上部には点検口を設けて、人が乗って作業しても損傷のおそ れのないものとしなければならない。

9.19.5 配 線

- 1 ケーブル配線は、第9章 第9節 金属ダクト配線工事、第10節 ケーブル配線工事、第14節 通信 用ケーブルラック配線工事によるほか、次の各号によって行わなければならない。
 - (1) ケーブル配線は、装置間においては接続しない。
 - (2) ケーブルラック上の配線は、整然と敷設する。
 - (3) ケーブルラック上の配線の積み重ね高さは、水平部にあっては0.2m以下、垂直部では0.15m 以下としなければならない。
 - (4) ケーブルの末端は、端子に取り付けやすいように編出しを行わなければならない。
 - (5) 外被を取り除いたケーブルは、ケーブルラック上に敷設してはならない。
 - (6) 外被を取り除いた心線をケーブルハルターに支持する場合は、その支持部分でのケーブルの 心線をビニルテープ等によって保護しなければならない。
- 2 付線は、次の各号によって行わなければならない。
 - (1) ラッピング端子への巻付けは、適合したラッピング工具を用いて巻き付けを行うものとする。
 - (2) はんだ付端子への接続は、電気的、機械的に行い、端子との混線の危険が生じないように処置しなければならない。
 - (3) クリップ式端子に心線を接続する場合は、適合した工具を使用して行わなければならない。
 - (4) 編出し部分の長さは、所要長に端子収容替えが1回行える程度の余裕を持たせたものとする。

- (5) 接続をしない予備用の心線は、十分な余長を確保しておかなければならない。
- 3 束線の編付けの方法は、ろう糸等を使用して3~4cm程度の間隔で行う。
- 4 ジャンパー線は、配線輪を通じ十分な余裕を持って配線しなければならない。ただし、配線状態によっては、配線輪を通さないで行えるものとする。
- 5 信号線の配線は、次の各号によって行わなければならない。
 - (1) 信号線の配線及び付線は、1項及び2項に準じて行わなければならない。

なお、しゃへい編組PVC信号線は、はぎ口が解けないように処置しておかなければならない。

(2) しゃへい線の末端では、そえ線の余長を接地リード線に接続し、接地リード線にビニルチューブ等をかぶせて接地端子に接続しなければならない。

9.19.6 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 20 節 多重通信設備工事

9.20.1 一 般

多重通信設備工事は、多重通信装置、周辺装置、電源装置、通信棟等に係わる装置据付工事、装置間配線工事及び装置調整工事であり、次の各号によって行わなければならない。

- (1) 多重通信設備は、地区管理部ごとの多重通信システムに応じた機器構成のものとする。
- (2) 多重通信装置は、装置相互を光ファイバーケーブルによって接続し、原則として通信機械室 又は通信棟内に設置する。
- (3) 多重通信装置及び各種周辺装置を設置する通信機械室又は通信棟は、温度、湿度、じんあい、振動等の環境条件を満たすものでなければならない。

9.20.2 装置の据付け

多重通信設備の各種装置の据付は、9.19.2に準じて行うものとする。

9.20.3 通信棟の装置

通信棟の装置は、次の各号によって行わなければならない。

- (1) 通信棟は、あらかじめコンクリート製の基礎上又は鉄骨製の基礎上の所定位置に設置されたアンカーボルトを用いてチャンネルベースを堅固に固定し、水平に据付けなければならない。
- (2) 通信棟の設置場所及び向きは、出入口扉の開閉、換気ダクトの排気及び通信配線が支障なく 行えるものでなければならない。

9.20.4 通信棟内の配線

通信棟内の配線は、第9章 第10節 ケーブル配線工事及び第12節 光ファイバーケーブル配線工事 に準じて行わなければならない。

9.20.5 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 21 節 防犯通報設備工事

9.21.1 一 般

防犯通報設備工事は、東京地区の料金所、営業管理所及び料金計算所に設置する防犯用無線装置、 防犯用押ボタン親装置及び防犯用押ボタンに係わる装置据付工事、装置間配線工事及び装置調整工 事である。なお、無線設備の認定、無線局の免許申請及び運用は、東京防犯無線協会が実施するも のである。

9.21.2 装置の取付け

- 1 空中線の取付は、次の各号によって行わなければならない。
 - (1) 空中線を取り付ける場合は、あらかじめ電界強度を測定し、最適な位置及び方向を決定した後に行わなければならない。
 - (2) 空中線の位置は、弱電流電線又は強電流電線等から3m以上離すことを原則とする。
 - (3) 空中線は、鉄塔又はポールに取付金物にて堅固に取り付けなければならない。 なお、アンテナ用ポールはコンクリート基礎に設置したアンカーボルトによって、鉛直に建注 しなければならない。
- 2 装置の据付けは、次の各号によって行わなければならない。
 - (1) 防犯用無線装置及び防犯用押ボタン親装置は、床面にアンカーボルト類によって堅固に固定し、水平に設置しなければならない。
 - (2) 設置位置は、点検保守が容易に行える場所とし、壁面等とは正面側で1.5m以上、側背面側で0.5m以上それぞれ間隔を保つことを原則とする。

9.21.3 配 線

防犯通報設備に係わる配線は、次の各号によって行わなければならない。

- (1) 電源供給回路は、専用の分岐回路とし、分配電盤の分岐用開閉器には『防犯無線用禁開放』 の表示を行わなければならない。
- (2) 給電線用の同軸ケーブルの配線は、10倍以上の屈曲半径が確保できるような配線としなければならない。
- (3) 防犯用押ボタン親装置から防犯用押ボタンへの配線は、CCPケーブルを使用し、必要箇所には『防犯無線用』との表示を行わなければならない。

第 22 節 非常電話設備工事

9.22.1 一 般

非常電話設備工事は、首都高速道路の構内用電話施設としての非常電話用親装置、非常電話受付卓、付加装置及び非常電話機に係わる装置据付工事、装置間配線工事及び装置調整工事である。 なお、工事形態としては、非常電話機据付工事のみの場合もある。

9.22.2 装置の据付け

非常電話用親装置、非常電話受付卓及び付加装置の据付工事は、9.19.2に準じて行うものとする。

9.22.3 非常電話機の据付け

非常電話機の据付工事は、次の各号によって行わなければならない。

- (1) スタンド型非常電話機の据付けは、次によって行う。
 - イ スタンド型非常電話機の据付けは、高速道路の高欄又は地覆部分に設置した非常電話機用 アンカーボルトにスタンド部分を固定させ、その後、固定したスタンドに非常電話機を据付 けなければならない。
 - ロ 非常電話機スタンドを固定する場合は、スタンドのベースプレートと基礎コンクリートと のすき間に鋼板製ライナーを挟み、スタンドが鉛直になるように調整する。
 - なお、スタンドのベースプレートと基礎コンクリートが接する部分は、無収縮性モルタルコンクリートによって補修仕上げ処理を行わなければならない。
 - ハ スタンドのベースプレートと基礎コンクリートが接する部分には、厚さ4.5mm程度のゴムパッキンを挿入し、基礎部分の配管などから湿気がスタンド内にこもらないような防湿処理を施さなければならない。
- (2) 壁掛型非常電話機の据付は、次によって行う。
 - イ 非常電話機の据付け高さは、送受話器の中心が路面より1.5mの高さになるように据付けなければならない。
 - ロ 壁掛型非常電話機は、据付金物によって壁面部に据付けなければならない。
- (3) トンネル内型非常電話機の据付けは、次によって行う。
- トンネル防音型非常電話機は、ステンレス製の収容箱に収め、消火栓箱内に据付けなければならない。
- (4) 設置後、非常電話機取付金具を含めて大きな揺れがある場合、主任監督員に報告しなければならない。

9.22.4 配 線

非常電話機用配線は、第9章 第10節 ケーブル配線工事、第14節 通信用ケーブルラック配線工事 に準じて行うほか、次の各号によって行わなければならない。

(1) 非常電話機用配線工事は、原則として市内用CCPケーブルを使用して、電話機内端子盤の送

- り配線によって変電塔間の分岐通信線路を配線する。
- (2) 非常電話機用配線工事におけるケーブルの接続及び分岐は、ボックス、ラック上又は端子盤 内において行わなければならない。
- (3) 非常電話機への引込み箇所でケーブルが露出する場合は、ケーブルの被覆は電話機内へ引入れるまでははぎ取ってはならない。また、その引込み部分は、防水処理を施さなければならない。

9.22.5 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 23 節 火災報知設備工事

9.23.1 一 般

火災報知設備工事は、対象となる建物及びトンネル内に据付ける感知器、受信機等の各種機器設備に係わる装置据付工事、装置間配線工事及び装置調整工事であり、次の各号によって行わなければならない。

- (1) 建物用火災報知設備の設置基準及び施工方法は、消防法第17条及び同施行令、施行規則の関係規定に準拠し、次によって行わなければならない。
 - イ 建物用火災報知器設備は、受信機、副受信機、感知器、中継機、発信機、音響装置及び表示灯によって構成される。
 - ロ 警戒区域は、600m2以下とし、その1辺の長さは50m以下(光電式分離型感知器は100m以下) とする。
 - ハ 受信機及び副受信機は、建物の規模に応じて守衛室、中央管制室(防災センター)及び常 時人がいる部屋に設置しなければならない。
 - ニ 感知器は、その性能に応じた機種のものを、適合した取付け高さ、取付け間隔及び取付け 位置に取り付けなければならない。
- (2) トンネル用火災報知設備の設置基準及び施工方法は、当社が制定した『トンネル非常用施設設計指針』に準拠し、次によって行わなければならない。
 - イートンネル用火災報知設備は、トンネルの等級区分に対応した規模のトンネルに設置する。
 - ロ トンネル用火災報知設備は、火災受信盤、検知器、押ボタン式通報装置、非常ベルによって構成される。
 - ハ 検知器は、その性能に応じた機種のものを、適合した取付高さ、取付け間隔及び取付け位 置に取り付けなければならない。
 - なお、水噴霧設備が設置される場合は、その取付け間隔及び取付け位置について、水噴霧の放 射区域と調整を図ったものとしなければならない。

9.23.2 建物用火災報知設備の取付け

- 1 建物用火災検知器の取付けは、次の各号によって行わなければならない。
 - 空気間の取付けは次によって行う。
 - イ 空気管はたるみのないように張り、直線部は約0.35m間隔に、また屈曲部及び接続部から 0.05m以下の位置をステープル等によって固定する。
 - ロ 壁、はり等の貫通箇所、埋設箇所又は外傷を受けるおそれのある箇所では保護管を使用する。
 - ハ 空気管は、暖房用配管その他の発熱体から原則として0.3m以上離し、暖冷房用給気口等からも離して敷設しなければならない。
 - ニ 空気管を金属面に取り付ける場合は、金属面から浮かし、小屋裏等に敷設する場合は、ちょう架用線などを使用して敷設しなければならない。
 - 本 空気管は、取付面の下方0.3m以内及び感知区域の取付面の各辺から1.5m以内の位置に取付けなければならない。
 - へ 検出部は、5度以上傾斜させないようにして取付けなければならない。
 - (2) 差動式及び定温式スポット形感知器の取付けは、次によって行う。
 - イ 換気口などの吹出口から、1.5m以上離した位置に取り付けなければならない。
 - ロ 放熱器など温度変化率の大きなものの直上又は受変電室の高圧配線の直上など、保守点検 作業が困難な場所を避けた場所に取り付ける。
 - ハ 感知器の下端は、取付面の下方0.3m以内の位置とする。
 - ニ 感知器は、45度以上傾斜させないようにして取付けなければならない。
 - (3) 煙感知器の取付けは、(2) 号イ、ニによるほか、次によって行う。
 - イ 感知器の下端は、取付面の下方0.6m以内の位置とする。
 - ロ 感知器は、壁又は梁から0.6m以上離れた位置とする。ただし、廊下及び通路でその幅が1.2m 未満の場合は、中央部に設置する
 - ハ 感知器を高所に設置する場合は、設置後の保守点検が行えるように考慮しなければならない。
 - (4) 光電式分離型感知器の取付けは、次によって行う。
 - イ 感知器の受光面は、日光を受けないような位置に取り付ける。
 - ロ 感知器の光軸は、並行する壁から0.6m以上離れた位置となるようにする。
 - ハ 感知器の送光部及び受光部は、その背後の壁から1m以内の位置になるようにする。
 - ニ 感知器の光軸の高さは、床面から天井面までの高さの80%以上となるような位置とする。
 - ホ 感知器の光軸の長さは、感知器の公称監視距離以下に設定する。
- 2 受信機及び副受信機の据付けは、次の各号によって行わなければならない。
 - (1) 受信機及び副受信機の設置は、9.23.1の(1)号のハに示される場所で、騒音、振動、ほこり 及び湿気等が少ないような環境の場所でなければならない。
 - (2) 受信機及び副受信機の設置場所は、採光及び照明方法を考慮し、表示ランプの視認・判読が

容易に行えるようにしなければならない。

(3) 受信機と壁面又は柱面との間隔は、表9.22.1によるものとする。

表9.22.1 受信機と壁面・柱面との間隔

受信機の形式	壁面・柱面との間隔 (m)
壁掛形	正面 1.0以上
自 立 形	正面 1.5以上
	側面 *0.5以上
	背面 *0.6以上

注 *側背面に扉のないものは、この限りではない。

- (4) 自立形の受信機は、耐震性を考慮した据付けとしなければならない。
- (5) 壁掛形の受信機を取り付ける場合は、必要に応じて壁を補強し、堅固に据付けなければならない。

9.23.3 トンネル用火災報知設備の取付け

トンネル用火災報知設備の取り付けは、次の各号によって行う。

- (1) 二波長ちらつき式検知器及びCO2共鳴式検知器の取り付けは、次によって行う。
 - イ 検知器の取付け位置は、トンネル壁面の路面から1.5m、監視用通路がある場合は、監視用 通路面から1.5mの高さとする。また、その取付け間隔は25mピッチとする。
 - なお、トンネル構造によっては、検知器の監視範囲に死角が生じないように、その設置間隔を 狭めることができる。
 - ロ 検知器は、トンネル照明及び走行車のヘッドライト等の照明光の影響を受けないような取付け位置及び方向としなければならない。
 - ハ 検知器をトンネル壁面に取り付ける場合、壁面清掃によってその機能が損なわれないよう な構造及び取付け方法としなければならない。
- (1) 火災受信盤の設置は、原則としてトンネル換気所又は管制所の常時監視員等が駐在している場所とし、9.23.2の2に準じて行わなければならない。

9.23.4 配 線

- 1 建物用火災報知器設備工事の配線は、第9章 第1節から第10節までの規定に準じた配線工事にて 行わなければならない。
- 2 トンネル用火災検知設備工事の配線は、前項によるほか、次の各号によって行わなければならない。
 - (1) 検知器用配線は、送り配線とし、検知器への立ち上がり部分は原則としてトレンチ内配線とする。
 - (2) 検知器用配線の電圧降下率は、同時に3個の検知器が動作した状態で20%以下としなければならない。

9.23.5 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 24 節 電気時計設備工事

9.24.1 一 般

電気時計設備工事は、事務所、自動車駐車場などにおいて、時刻表示を一元的に行う時計装置に 係わる装置据付工事、装置管配線工事及び装置調整工事である。

なお、個別的に電池式時計を取り付けるような場合は、この節での対象としない。

9.24.2 装置の取付け

- 1 親時計の取付けは、次の各号によって行わなければならない。
 - (1) 親時計の取付場所は、直射日光を避け、振動、温度変化、ほこり及び湿気が少ない場所でなければならない。
 - (2) 親時計は、磁気誘導障害などを受けるおそれのある場所には設置してはならない。ただし、 やむを得ず設置する場合は、適当な磁気シールド措置を講じなければならない。
 - (3) 親時計と壁面又は柱面との間隔は、表9.23.1によるものとする。

表9.23.1 親時計と壁面又は柱面との間隔

親時計の形式	壁面・柱面との間隔 (m)
自 立 形	正面 1.5以上
	側面 *0.5以上
	背面 *0.6以上
壁掛形	正面 1.0以上
	側面 *0.3以上

- 注 *側背面に扉のないものは、この限りではない。
- (4) 自立型親時計は、コンクリート基礎などの上面をレベルあわせして水平に仕上げ、アンカーボルト類にて堅固に固定する。木造床の場合にあっては、独立した基礎を設けて、耐震性を考慮し、堅固に固定する。
- (5) 壁掛形親時計は、鉛直に壁面に取り付ける。木造壁の場合では、必要に応じて壁を補強するか、あるいは裏面を取り付ける等の措置を講じなければならない。
- 2 子時計の取付けは、次の各号によって行わなければならない。
 - (1) 子時計の取付けは、保守点検が容易で、かつ、表示が見やすい場所に鉛直に体裁よく堅固に 取り付ける。
 - (2) 子時計の取付高さは、原則として床上2.3mとする。
 - (3) 壁掛形及び吊下げ形子時計は、金属管配線工事にて設置したボックスなどに取り付ける。

9.24.3 配 線

電気時計設備工事の配線は、第9章 第1節から第10節までの規定に準じた配線工事にて行うほか、

次の各号によって行わなければならない。

- (1) 子時計回路の配線は、拡声設備のマイクロホンなどの入力回路の配線と管を共用してはならない。
- (2) 配線には原則としてビニル絶縁電線を使用し、識別する。

なお、切り分けて試験する必要がある箇所には、端子を設けなければならない。

- (3) スピーカー付時計の他配線は、両配線とも同一管内に収容する。
- (4) 配線の接続及び分岐は、ボックス内又は端子箱内で行う。
- (5) ボックス又は端子箱と親時計又は配電盤との間の配線が露出となる場合は、これらをまとめ 被覆保護を行う。
- (6) 交流電流回路の配線は、原則として専用回路とし、その分岐開閉器には『電気時計用禁開放』 の表示を行う。

9.24.4 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 25 節 テレビ共聴設備工事

9.25.1 一 般

テレビ共聴設備は、共聴用アンテナで受信したテレビ放送波を同軸ケーブルにて分配するための 装置に係わる装置据付工事、装置間配線工事及び装置調整工事である。

なお、難視聴対策のために行う有線テレビ放送設備工事は、この節での対象としない。

9.25.2 装置の取付け

テレビ共聴装置の取付けは、次の各号によって行う。

- (1) アンテナの取付けは、次によって行わなければならない。
 - イ アンテナを取り付ける場合は、あらかじめ電界強度の測定を行い、混信、雑音及びゴーストが生じないような方向及び位置を選定しなければならない。
 - ロ アンテナの取付け位置は、他の弱電流電線、強電流電線などから原則として3m以上離隔しなければならない。
- (2) アンテナに取り付ける整合器は、フィーダをなるべく短くして取付けなければならない。
- (3) 方向性結合器及び分配器は、防水構造の鉄製又はアルミダイキャスト製の収容箱に収容する。
- (4) テレビ用アウトレットの取付高さは、原則としてその中心部が床上0.3mとする。ただし、和 室の場合は、0.15mとする。
- (5) 機器収容箱の取付高さは、盤上端で天井下0.2mとする。

9.25.3 配 線

テレビ共聴設備工事の配線は、第9章 第1節から第9節までの規定に準じた配線工事にて行うほか、

次の各号によって行わなければならない。

- (1) 同軸ケーブルは、曲げて配線する場合、その屈曲半径はケーブル外径の10倍以上としなければならない。
- (2) 同軸ケーブルが接続されていない端子には、終端抵抗を接続する。
- (3) 増幅器、分岐器、分配器(直列ユニットは除く)等に同軸ケーブルを接続する場合は、コネクタを使用して行わなければならない。

第 26 節 インターホン設備工事

9.26.1 一 般

インターホン設備工事は、事務所及び集約料金所においてインター本装置にて通話連絡するための装置に係わる装置据付工事、装置間配線工事及び装置調整工事である。

9.26.2 装置の取付け

インターホンの取付けは、次の各号によって行わなければならない。

- (1) インターホンの壁取付け高さは、原則として機器の中心で一般用は床上1.3m、身障者用は床上1.1mとする。
- (2) 卓上型のインターホンを取り付ける場合は、ローゼットを机の側面等に取り付けなければならない。

9.26.3 配 線

インターホン設備工事の配線は、第9章 第1節から第10節までの規定に準じた配線工事にて行わなければならない。

第 27 節 再放送設備工事

9.27.1 一 般

再放送設備工事は、トンネル内のAM及びFM放送の受信が困難な場所で実施するAM及びFM放送の再放送装置に係わる装置据付工事、装置間配線工事及び装置調整工事である。

なお、トンネル内の空中線としての漏洩同軸ケーブル配線工事は、第11節 漏洩同軸ケーブル配線 工事に準じたものとする。

9.27.2 装置の据付け

再放送装置の据付工事は、9.19.2に準じて行うものとする。

9.27.3 受信用空中線の取付け

受信用空中線の取付けは、次の各号によって行わなければならない。

(1) 受信用空中線を取り付ける場合は、あらかじめ電界強度の測定を行い、混信、雑音が生じな

いような方向及び位置を選定しなければならない。

- (2) 受信用空中線の取付け位置は、他の弱電流電線、強電流電線などから原則として3m以上離隔 しなければならない。
- (3) 受信用空中線は、鉄塔又はポールに取付金物によって取付けなければならない。 なお、ポールは、コンクリートに埋設したアンカーボルトによって鉛直に建柱する。

9.27.4 受信用変換部の取付け

受信用変換部の取付けは、次の各号によって行わなければならない。

- (1) 受信用変換部は、鉄製の収容箱に収容する。収容箱は、受信空中線にできるだけ近い屋内の壁面部に取り付ける。
- (2) 収容箱の取付高さは、原則として箱上端部で天井下0.2mとする。

9.27.5 配 線

再放送設備工事の配線は、第9章 第11節、第12節及び第14節に準じた配線工事にて行うほか、次の各号によって行わなければならない。

- (1) トンネル内の誘導アンテナ (再放送用空中線) は、漏洩同軸ケーブルの外被を利用し、帰線は2mm以上の600Vビニル電線をトンネル内に敷設する。
- (2) 同軸ケーブルは、曲げて配線する場合、その屈曲半径はケーブル外径の10倍以上としなければならない。
- (3) 同軸ケーブルを機器に接続する場合は、コネクタ接続とする。

9.27.6 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第10章 交通管制設備工事

第 10 章 交通管制設備工事

第1節 共通 事項

10.1.1 適用範囲

この章は、首都高速道路の交通管制設備に係わる工事に適用する。

10.1.2 工事の種類

交通管制設備工事の種類は、下記に示すものとする。

- (1) 交通管制中央装置据付工事
- (2) 車両感知器据付工事
- (3) 可変情報板据付工事
- (4) 図形情報板据付工事
- (5) 街路可変情報板据付工事
- (6) 交通監視用テレビ装置据付工事
- (7) 道路交通情報表示装置据付工事
- (8) カーブ地点誘導灯据付工事
- (9) トンネル警報表示装置据付工事
- (10) 料金所用車両感知器据付工事

10.1.3 個別調整及びシステム総合調整

交通管制設備工事は、首都高速道路交通管制システムに係わる装置の新設及び改修工事であり、 完成した装置は単独に運用されるものでなく、システムの中で有機的に運用される。このため、工 事での調整は装置単独の調整と同時にシステムとしての総合調整が必要となる。交通管制設備工事 における個別調整及び総合調整は、次の各号によって行わなければならない。

- (1) 個別調整は、現地に据付けられた装置が、仕様どおりの機能を発揮させるために行う調整作業で、次のようなものがある。
 - イ 装置単体を電気的及び機械的な定格使用状態にさせる為の装置の単体調整
 - ロ 複数の装置にて構成されたシステムが所定の機能を発揮させる為に、装置を単体調整した 後に個々の装置を統合して行うシステムの機能調整
 - ハ 親装置と端末装置及び2基以上の装置を対向又は連係した状態で使用する場合において、それぞれの装置を対向状態にさせて機能の調整を図る対向調整
- (2) 総合調整は、現地に据付けられた装置を交通管制システムに組込んだ状態にて行う調整作業で、ハードウェア調整とソフトウェア機能調整とがある。
 - イ ハードウェア調整は、交通管制設備工事における装置が、交通管制システムに組込まれた 状態において電源系及び制御信号系の機能が一元的に実施できるように行う調整である。
 - ロ ソフトウェア機能調整は、交通管制設備工事における装置が、交通管制システムに組込まれた状態において、交通管制運用ソフトウェアのそれぞれの機能が仕様どおりに発揮できる

ようにするために行う最終的な調整作業である。

第 2 節 交通管制中央装置据付工事

10.2.1 一 般

交通管制中央装置据付工事は、首都高速道路の交通管制システムの中央処理装置及び周辺装置に 係わる装置据付工事、装置間配線工事及び装置調整工事である。

10.2.2 交通管制中央装置の据付け

交通管制中央装置の据付けは、9.19.2によるほか、次の各号によって行わなければならない。

- (1) 交通管制中央装置及び周辺装置は、電子計算機室の所定の場所に、配置計画に基づき整然と 配置し、かつ、他の装置及び壁面・柱面とは、保守点検が容易に行えるような間隔を保たなけ ればならない。
- (2) 交通管制中央装置及び周辺装置は、設置場所に適合した方法にて耐震措置を講じなければならない。
- (3) 操作卓は、設置場所の形状、広さ及びグラフィックパネルの配置及び操作性等を考慮して設置しなければならない。
- (4) 装置据付基礎架台は、装置間の配線方式に適合したものを選定しなければならない。
- (5) 装置の形状及び配置は、既存の装置がある場合は、その形状寸法及び配置に適合したものとし、将来の増設分を考慮したものとしなければならない。
- (6) 装置をラックに収容する場合は、将来の実装分を考慮した形状寸法のものとしなければならない。
- (7) 装置の表面パネル等を監視及び操作する場合は、その装置の方向及び操作スペース等を考慮し、保守管理に支障が生じないようにしなければならない。

10.2.3 装置間の配線

装置間の配線は、次の各号によって行わなければならない。

- (1) 連結して設置する装置間の配線は、それぞれの端子部から所定のケーブルを装置内又はフリーアクセス部を経由し敷設する。
- (2) 配線に使用するケーブルは、所定の形状のものとし、配線経路によって変形が生じたり、外力の影響を受けないように余裕をもって整然と敷設しなければならない。
- (3) フリーアクセス内に配線する場合は、あらかじめ配線用途及び使用ケーブルの種別に応じた 配線経路を設定し、整然と敷設しなければならない。
- (4) 配線は、熱、じんあい、衝撃などが発生する場所を避けて行わなければならない。
- (5) 交通管制中央装置への電源配線は、無停電電源装置から所定の専用回路によって分岐配線し、 負荷電流及び電線こう長に適合した太さの低圧ケーブルを、金属管配線工事又は敷設場所に応 じた工事方法によって敷設しなければならない。

10.2.4 装置の調整

交通管制中央装置の調整は、中央装置に係わる調整と各種端末装置を含めた総合調整であり、次の各号によって行わなければならない。

- (1) 中央装置単独調整は、中央装置据付及び装置間配線が終了した状態において、装置の単体調整、機能調整を行い、仕様どおりの機能が発揮できるように調整しなければならない。
- (2) 中央装置総合調整は、中央装置及び各種端末装置の据付工事及び各種配線工事が終了した段階で実施する。中央装置総合調整の実施に当たって、あらかじめ各々の機能調整を行い、それぞれの仕様に基づき、交通管制システムの運用に必要となる機能を確認するために、中央装置と端末装置を一元化した状態で調整を行う。

なお、調整作業の分担は、工事範囲に応じて、あらかじめそれぞれの工事施工者間で調整を 行っておくものとする。

10.2.5 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 3 節 車両感知器据付工事

10.3.1 一 般

車両感知器据付工事は、高速道路を走行する車両の交通量、速度等を超音波式感知器で感知し、 検出するための超音波式ヘッド、車両感知器、データ伝送装置に係わる装置据付工事、装置間配線 工事及び装置調整工事である。

10.3.2 超音波式ヘッドの取付け

超音波式ヘッドの取付けは、次の各号によって行わなければならない。

(1) 超音波式ヘッドを取り付ける場合、その感知領域が対象とする車線に適合した、場所及び位置であることを確認して設置位置を決定しなければならない。

なお、設計図書等で指定した場所の設置条件が不適当な場合は、その付近で条件に適合した 場所を選定し、監督職員の承諾を得て設置場所の変更を行うものとする。

- (2) 超音波式ヘッドを照明ポールに取り付ける場合は、超音波式ヘッド取付用アームを、照明ポールの所定の位置に取付けて行わなければならない。
- (3) 超音波式ヘッドを単独に取り付ける場合は、専用ポールを所定の位置にアンカーボルト類等で固定して建柱した後、専用ポールの所定の位置に取付けなければならない。
- (4) 門柱に超音波式ヘッドを取り付ける場合は、超音波式ヘッド取付用アームを門柱の所定の位置に取付けなければならない。
- (5) 超音波式ヘッドを設置後、車線の位置が確定した段階で、感知器の感知方向、感知距離、感知領域等を測定し、取付け位置の微調整及び感知方向等の調整を行い、位置及び角度を固定し

なければならない。

10.3.3 車両感知器の据付け

車両感知器の据付けは、次の各号によって行わなければならない。

- (1) 車両感知器の設置場所は、収容容量に適合した実装系統数及び最遠端の超音波式ヘッド迄の 距離を1km以下となるような条件の場所とし、原則として、変電塔の弱電盤内の所定の架にその 伝送装置と併設して設置しなければならない。
- (2) 車両感知器を単独に設置する場合は、専用の収容箱に収容して行い、車両感知器収容箱は所定位置の基礎に設置したアンカーボルト類で固定し、水平に設置する。

なお、車両感知器収容箱の設置場所は、点検作業や扉の開閉が容易に行え、振動、じんあい 及び湿気が少ない場所としなければならない。

(3) 設置後、車両感知器取付金具を含めて大きな揺れがある場合、主任監督員に報告しなければならない。

10.3.4 伝送装置の据付け

車両感知器用伝送装置の据付けは、次の各号によって行わなければならない。

- (1) 車両感知器用伝送装置親局(以下「受信装置」という。)の据付けは、地区管理部の通信機械 室とし、10.2.2に準じて行わなければならない。
- (2) 車両感知器用伝送装置子局(以下「送信装置」という。)の据付けは、次によって行わなければならない。
 - イ 送信装置の設置は、車両感知器と同一の場所及び取付方法にて行う。
 - ロ 送信装置を変電塔に収容する場合は、予め変電塔弱電盤内に設置した専用架の車両感知器 収容位置に隣接した位置とする。
 - ハ 送信装置を単独に設置する場合は、原則として、車両感知器収容箱の所定の位置に収容する。
 - ニ 送信装置の信号を多重通信装置により伝送する場合は、その複調部を通信塔内の専用架に 収容する。

10.3.5 超音波式ヘッド用配線

超音波式ヘッド用配線は、次の各号によって行わなければならない。

- (1) 超音波式ヘッドへの配線は、周辺状況及び道路の景観に適合した方法を選定して行わなければならない。
- (2) 超音波式ヘッドの引出し配線は、専用のリード線を使用し、車両感知器への信号伝送用の通信ケブルとは最寄りのプルボックス内で専用のケーブル分岐材によって接続する。
- (3) 専用ポールに超音波式ヘッドを取り付ける場合以外の引出し配線は、露出配線とし、ポール 又はアームにステンレスバンド類によって支持固定する。

- (4) 専用ポールに超音波式ヘッドを取り付ける場合の引出し配線は、専用ポール内に収容して敷設する。
- (5) 超音波式ヘッドから車両感知器までの配線の長さは、原則として、1km以下としなければならない。

10.3.6 装置間の配線

車両感知器装置間の配線は、10.2.3に準じて行うほか、次の各号によって行わなければならない。

- (1) 車両感知器と送信装置との配線は、変電塔又は車両感知器収容箱内配線とする。
- (2) 受信装置と中央処理装置との配線は、中央装置の中間端子盤の感知器登録番号に対応した所定線番の1次側端子までとする。

10.3.7 装置の調整

車両感知器の装置調整は、単体調整及び総合調整とし、次の各号によって行わなければならない。

- (1) 装置単体調整は、超音波式ヘッド、車両感知器、送信装置及び受信装置について、それぞれの装置に応じた方法で調整しなければならない。
- (2) 装置の総合調整は、単体調整が終了した後、超音波式ヘッド、車両感知器、送信装置及び受信装置を伝送回線で接続した使用状態での伝送信号特性に係わる調整を行う。

10.3.8 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 4 節 可変情報板据付工事

10.4.1 一 般

可変情報板据付工事は、首都高速道路の交通情報等を文字情報によって、走行車両に提供する可変情報板、可変情報板遠方監視制御装置の装置据付工事、装置間配線工事及び装置調整工事である。

なお、可変情報板の遠方監視制御装置は、交通管制中央OPC(以下「遠制親局」という。)と端末装置(以下「遠制子局」という。)を伝送回線で接続し、系統別にグループ構成している。

10.4.2 可変情報板の据付け

可変情報板の据付けは、次の各号によって行わなければならない。

(1) 可変情報板を設置する場合は、あらかじめ、設置予定場所における前方位置からの見通しが 得られることを確認しておかなければならない。

なお、見通しが得られないと判明した場合は、最寄りの場所で据付位置又は設置場所を変更 し、見通しが得られる案を作成し監督職員の指示による変更を行うものとする。

(2) 可変情報板は、所定場所において走行車の運転者が容易に視認、判読できるような位置及び 方向で門柱又は高架橋桁などを利用して、水平に据付けなければならない。

- (3) 可変情報板の取付けは、門柱又は高架橋桁に所定の取付金物を使用し、自重、風圧、振動等によって落下が生じないように、堅固に固定しなければならない。
- (4) 可変情報板の現地搬入及び据付作業は、作業場所の状態及び作業条件に適合したクレーン車により吊り上げて行い、作業場所の周辺に対する防護措置を講じなければならない。

なお、クレーン車のアウトリガーは完全に出した状態にし、その固定に際しては、路面の養生を十分に行わなければならない。

(5) 設置後、可変情報板及びその周辺の附属物等に大きな揺れがある場合、主任監督員に報告しなければならない。

10.4.3 遠制装置の据付け

可変情報板の遠制親局及び遠制子局の据付けは、10.2.2によるほか、次の各号によって行わなければならない。

- (1) 可変情報板の遠制親局は、地区管理部の通信機械室の所定の位置に設置しなければならない。
- (2) 可変情報板の遠制子局は、可変情報板の背面内部の所定の位置に収容する。

なお、可変情報板への遠制子局の据付けは、原則として可変情報板の製作工場又は現場での 地上部において行うものとする。

10.4.4 配 線

可変情報板の配線は、次の各号によって行わなければならない。

- (1) 門柱上での配線は、可とう電線管配線工事によって行い、所定の位置に整然と敷設しなければならない。
- (2) 遠制子局の配線は、可変情報板内での所定の端子以降の盤内配線とする。
- (3) 遠制親局の配線は、10.2.3に準じて行うものとする。

10.4.5 装置の調整

可変情報板の装置調整は、単体調整及び総合調整とし、次の各号によって行わなければならない。

- (1) 装置単体調整は、可変情報板及び遠方監視制御装置の各々の装置に応じた方法で調整しなければならない。
- (2) 装置の総合調整は、単体調整が終了した可変情報板、遠制子局及び遠制親局を伝送回線で接続した使用状態において、遠制親局からの制御信号による可変情報板への所定パターンの表示確認及び可変情報板側の状態変化に対する信号監視等に係わる調整を行う。

10.4.6 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 5 節 本線図形情報板・街路図形情報板据付工事

10.5.1 一 般

交通管制用図形情報板据付工事は、首都高速道路の交通情報等を図形情報によって、走行車両に 提供する図形情報板、図形情報板遠方監視制御装置及び投光装置の装置据付工事、装置間配線工事 及び装置調整工事である。

なお、図形情報板遠方監視制御装置は、中央装置(以下「遠制親局」という。)と端末装置(以下「遠制子局」という。)を伝送回線により接続し、系統別にグループ構成している。

10.5.2 図形情報板の据付け

図形情報板の据付けは、10.4.2によるほか、次の各号によって行わなければならない。

- (1) 図形情報板を設置する場合、作業条件によっては、図形情報板を所定の大きさに分割して行わなければならない。
- (2) 図形情報板を吊り上げるクレーン車は、図形情報板の重量及び形状寸法並びに作業場所の条件に適合したものでなければならない。
- (3) 設置後、図形情報板及びその周辺の附属物等に大きな揺れがある場合、主任監督員に報告しなければならない。

10.5.3 投光装置の据付け

投光装置の据付けは、次の各号によって行わなければならない。

- (1) 投光装置は、図形情報板の前方に設置した専用ポールに据付けなければならない。
- (2) 投光装置専用ポールは、所定の位置にアンカーボルト類等によってベースプレートを固定し 鉛直に建柱しなければならない。
- (3) 投光装置は、図形情報板の表面が均一に、かつ、所定の照度が得られるような、位置及び角度に据付けなければならない。
- (4) 投光装置を据付ける場合は、投光装置からの光が反対車線の走行車両に対し障害とならないように十分配慮しなければならない。

なお、反対車線への光漏れが大きな場合は、投光装置にルーバー等を取り付ける等光漏れ防 止措置を講じなければならない。

(5) 設置後、投光装置ポールに大きな揺れがある場合、主任監督員に報告しなければならない。

10.5.4 遠制装置の据付け

図形情報板の遠制親局及び遠制子局の据付けは、10.4.3に準じて行わなければならない。

10.5.5 配 線

図形情報板の配線は、10.4.4によるほか、次の各号によって行わなければならない。

(1) 投光装置への配線は、専用回路にて分岐し、負荷電流及び電線こう長に適合した太さの低圧

ケーブルを金属管配線工事又は敷設場所に応じた工事方法によって敷設しなければならない。

(2) 投光装置用安定器は、専用ポールの近辺に設置した安定器収容箱内に設置する。

10.5.6 装置の調整

図形情報板の装置調整は、単体調整及び総合調整とし、10.4.5に準じて行わなければならない。

10.5.7 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 6 節 街路可変情報板据付工事

10.6.1 一 般

街路可変情報板据付工事は、首都高速道路の交通情報等を文字又は図形情報によって、一般街路の走行車両に提供する街路可変情報板・街路可変情報板の遠方監視制御装置及び内照式案内標識の装置据付工事並びに装置間配線工事並びに装置調整工事である。

なお、街路可変情報板の遠方監視制御装置は、中央装置(以下「遠制親局」という。)と端末装置(以下「遠制子局」という。)が当社の通信回線又は日本電信電話株式会社専用回線を使用した 伝送回線により接続し、系統別にグループ構成している。

10.6.2 街路可変情報板の据付け

街路可変情報板及び内照式案内標識の据付けは、10.4.2によるほか、次の各号によって行わなければならない。

- (1) 街路可変情報板を設置する場合は、あらかじめ道路管理者及び所轄警察署長の道路作業協議の回答を得て、その回答条件を遵守した作業を行わなければならない。
- (2) 街路可変情報板の設置場所の選定においては、街路樹や道路交通信号機によって街路可変情報板の表示内容の視認・判読が妨げられることのないように、あらかじめ設置場所に対する見通し確認調査等を行っておかなければならない。
- (3) 街路可変情報板及び内照式案内標識は、所定の位置に建柱した専用の柱に堅固に据付けなければならない。
- (4) 街路可変情報板の現地操作箱は、専用柱付近の所定の位置に据付けなければならない。 なお、現地操作箱の据付けは、街路の歩行者に支障のないような位置及び方法にて行わなけれ ばならない。
- (5) 設置後、街路可変情報板及びその周辺の附属物等に異常なゆれがある場合、主任監督員に報告しなければならない。

10.6.3 遠制装置の据付け

街路可変情報板の遠制親局及び遠制子局の据付けは、10.4.3によるほか、次の各号によって行わ

なければならない。

- (1) 街路可変情報板の遠制子局は、街路可変情報板の背面側作業スペース又は専用柱の所定位置に据付ける。
- (2) 専用柱に据付ける遠制子局は、街路の歩行者に支障のないような位置及び方法にて行わなければならない。

10.6.4 配 線

街路可変情報板の配線は、10.4.4によるほか、次の各号によって行わなければならない。

(1) 街路可変情報板及び内照式案内標識の電源配線は、原則として、低圧電灯負荷設備として電力会社から引込み配線にて行う。

なお、引込み配線は、架空配線又は地中配線とし、地中配線の場合は、専用柱の建柱に合わ せ所定の太さの引込み用合成樹脂電線管を埋設しておかなければならない。

- (2) 街路可変情報板及び内照式案内標識と現地操作箱との間の配線は、専用柱内配線及び可とう電線管配線工事にて行う。
- (3) 内照式案内標識の点灯制御用自動点滅器は、内照式案内標識背面部の所定の位置に据付ける。
- (4) 遠制子局の伝送回線が地中引込みの場合は1号に準じて行い、架空引込み配線の場合にあっては所定の位置に保安器収容箱を据付ける。
- (5) 街路可変情報板と遠制子局との配線は、前(2)号に準じて行わなければならない。

10.6.5 装置の調整

街路可変情報板の装置調整は、単体調整及び総合調整とし、10.4.5 に準じて行わなければならない。

10.6.6 接 地

接地工事は、第9章 第18節 通信用接地工事によるほか、次によって行わなければならない。内照式案内標識の接地工事は、D種接地工事とし、専用柱の基礎工事に合わせて接地極埋設工事などを行わなければならない。

第 7 節 交通監視用テレビ装置据付工事

10.7.1 一 般

交通監視用テレビ装置据付工事は、首都高速道路の交通状況情報等をテレビ画像によって収集し、 地区管理部交通管制室の専用モニターに表示するための、テレビカメラ、カメラ制御箱、テレビモニター、操作卓及び映像伝送装置の装置据付工事、装置間配線工事及び装置調整工事である。

なお、テレビ画像は、所定の系統別に区分したカラー画像を原則とし、操作卓において選択した カメラの画像を伝送しモニターに表示する。

10.7.2 テレビカメラなどの据付け

テレビカメラ、カメラ制御箱及びカメラ専用ポールの据付けは、次の各号によって行わなければならない。

- (1) テレビカメラの設置にあたっては、あらかじめ現地において必要な視野が確保される場所を 選定して行わなければならない。
- (2) テレビカメラは、カメラ専用ポール又は可変情報板用門型柱等の取付架台に堅固に据付けなければならない。
- (3) テレビカメラを据付ける場合は、自重、風圧、振動などによって落下が生じないように、堅固に固定しなければならない。
- (4) カメラ制御箱は、カメラ専用ポールの近辺の高欄上又はカメラを設置した門型柱等に設置しなければならない。
- (5) 高欄上に設置するカメラ制御箱は、所定の位置にアンカーボルト類等によって堅固に固定して取付けなければならない。

なお、カメラ制御箱の据付け位置及び方向は、現地での点検作業が容易に行えるように考慮したものとしなければならない。

- (6) カメラ専用ポールは、所定の位置にアンカーボルト類等によってベースプレートを堅固に固定し、鉛直に建柱しなければならない。
- (7) 設置後、カメラ専用ポールに大きな揺れがある場合、主任監督員に報告しなければならない。

10.7.3 操作卓及び映像伝送装置などの据付け

テレビ操作卓、映像伝送装置及びテレビモニターの据付けは、10.2.2によるほか、次の各号によって行わなければならない。

- (1) カラー画像を光通信線路によって伝送する場合での伝送装置は、通信棟内の所定の中継器架に収容する。
- (2) テレビモニターは、地区管理部交通管制室等に設置したテレビモニター架での系統区分に対応した所定の位置に収容する。

10.7.4 配 線

交通監視用テレビ装置の配線工事は、次の各号によって行わなければならない。

- (1) テレビカメラ及びカメラ制御箱間の配線は、専用のカメラケーブルを使用し行わなければならない。
- (2) 画像伝送回線に光ファイバーケーブルを使用する場合は、第9章 第12節 光ファイバーケーブル配線工事に準じて行うものとする。
- (3) 地区管理部通信機械室に設置したテレビ画像伝送装置間の配線は、10.2.3に準じて行うものとする。

10.7.5 カメラの調整

交通監視用テレビカメラの装置調整は、単体調整及び総合調整とし、10.4.5によるほか、次の各号によって行わなければならない。

- (1) テレビカメラの単体調整は、画質、明るさ、画像視野、焦点及びホワイトバランス調整等を 行わなければならない。
- (2) 装置総合調整は、テレビカメラとテレビモニター間を使用状態での伝送回線により接続し、 画像伝送に係わる調整を行わなければならない。

10.7.6 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行うものとする

第8節 道路情報表示装置 = 首都高ナビ

10.8.1 一 般

道路情報表示装置は、首都高速道路の交通状況情報をパーキングエリアの情報コーナー等において表示提供するための、中央処理装置、データ編集装置、通信制御装置、集合変復調装置及び道路情報表示装置に係わる装置据付工事、装置間配線工事及び装置調整工事である。

なお、道路情報表示装置は、情報コーナーの規模、設置状態によって機器装置の構成が異なるが、 一般的な装置構成としては、表示装置、グラフィックパネル、通信制御部及び大型テレビモニター などがある。

10.8.2 中央処理装置などの据付け

中央処理装置、通信制御装置、集合変復調装置の据付けは10.2.2に準じて行うものとする。

10.8.3 道路情報表示装置の据付け

道路情報表示装置の据付けは、10.2.2に準じるほか、次の各号によって行わなければならない。

(1) 表示装置は、情報コーナーの所定の設置場所に、アンカーボルト類等によって堅固に据付けなければならない。

なお、設置場所の選定にあたっては、操作者の操作性及び保守点検作業等を配慮して行わなければならない。

- (2) グラフィックパネルは、情報コーナーの形状・寸法に適合したものとし、床面、壁面及び柱面との隙間やそり等が生じないように据付けなければならない。
- (3) グラフィックパネルと情報コーナーの天井面とは、適当な間隔を保ち、換気ファンの排気が 支障なく行えるようにしておかなければならない。
- (4) 通信制御部、大型テレビモニター及び電源用分電盤は、原則として、グラフィックパネルの 内部の所定位置に据付けなければならない。

10.8.4 装置間の配線

装置間の配線は、10.2.3によるほか、次の各号によって行わなければならない。

- (1) グラフィックパネル内部に収容する各装置間の配線は、所定の端子から引出し、グラフィックパネル内部の配線用ラック等に収容して敷設しなければならない。
- (2) グラフィックパネル内部の各装置の電源配線は、グラフィックパネルに設置した分電盤の所定の分岐開閉器から分岐配線する。

10.8.5 装置の調整

道路交通情報提供装置の調整は、単体調整及び総合調整とし、次の各号によって行わなければならない。

- (1) 装置単体調整は、中央処理装置、データ編集装置、通信制御装置集合変復調装置及び道路情報表示装置について、それぞれの装置に応じた方法で調整しなければならない。
- (2) 装置総合調整は、装置単体調整が終了した後に、道路情報表示装置と中央処理装置、データ編集装置、通信制御装置、集合変復調装置及び広域情報交換装置より受信した信号を道路情報表示装置において所定パターンの表示確認及び端末の状態変化に対する信号監視等に係わる調整を行わなければならない。

なお、調整作業の分担は、工事範囲に応じて、あらかじめそれぞれの工事施工者間で調整を行っておかなければならない。

10.8.6 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 9 節 カーブ地点誘導灯据付工事

10.9.1 一 般

カーブ地点誘導灯据付工事は、首都高速道路のカーブ区間の高欄部分などに設置した誘導灯を一 定の周期で点滅させることによってカーブ状態の視認が確実になされ、安全走行するためのカーブ 地点誘導灯及び制御器装置の装置据付工事、装置間配線工事及び装置調整工事である。

10.9.2 誘導灯の据付け

カーブ地点誘導灯の据付けは、次の各号によって行わなければならない。

(1) 誘導灯を設置する場合は、あらかじめ設計図書にて指示されている設置場所、設置間隔に対し、その視距、設置スペースの確保等の現地調査を行い、支障のないことを確認しなければならない。

なお、上記の現地調査で支障があることが判明した場合は、設置場所、設置間隔に対する実施 案を作成し、監督職員に提出して、その指示された方法にて実施する。

(2) 誘導灯は、40~50m前方地点から最もよく誘導灯の表面を視認できるような取付角度とし、 途中の照明ポール及び門型柱等に遮られないような位置に配置する。 (3) 誘導灯の設置場所は、カーブ外側の高欄部又は中央分離帯の路面からの高さ1mとする。設置場所の状態及び併設される防音壁、フェンス及びガードレール等との取合いを考慮した寸法・ 形状の取付金物にて取付位置、方向の調整を行う。

10.9.3 制御器の据付け

制御器の据付けは、所定の位置に設置したアンカーボルト類等により固定し、水平に取付けなければならない。

10.9.4 配 線

カーブ地点誘導灯の配線は、次の各号によって行わなければならない。

- (1) カーブ地点誘導灯の配線は、点灯グループごとに区分し、管内配線工事又はダクト配線工事にて行う。
- (2) カーブ地点誘導灯の配線は、周辺状況及び道路の景観に適合した方法を選定して行わなければならない。

10.9.5 接 地

接地工事は、第6章 接地工事によるものとする。

第 10 節 トンネル非常警報装置据付工事

10.10.1 一 般

トンネル非常警報装置据付工事は、首都高速道路トンネル防災システムの情報提供装置で、トンネル入口部などに設置したトンネル警報表示板によってトンネル内状況を表示し、安全走行を確保するためのトンネル警報表示板及び被制御装置に係わる装置据付工事、装置間配線工事及び装置調整工事である。

10.10.2 装置の据付け

被制御装置及びトンネル警報表示板の据付けは、10.4.2によるほか、次の各号によって行わなければならない。

- (1) 被制御装置は、トンネル警報表示板に併設するか又は接近した場所で被制御装置を操作した場合、トンネル警報表示板の表示状態が容易に確認できる位置に設置しなければならない。
- (2) トンネル警報表示板は、警報表示板、サイレン、赤色点滅灯を一体として設置し、緊急時などの情報提供にあってそれらが動作した際、視認性を確実に確保し、迅速に表示内容が判読できるように、それらを周辺状態に適合した配置で据付けなければならない。
- (3) 対象トンネルに複数のトンネル警報表示板を設置する場合は、設置場所の状態をあらかじめ 現地調査し、最も有効な配置間隔を選定して行わなければならない。
- (4) 設置後、警報表示板及びその周辺の附属物等に大きな揺れがある場合、主任監督員に報告し

なければならない。

10.10.3 配 線

被制御装置及びトンネル警報表示板の配線は、10.4.4に準じて行わなければならない。

10.10.4 装置の調整

トンネル警報表示板の装置調整は、単体調整及び総合調整とし、10.4.5に準じて行わなければならない。

10.10.5 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 11 節 料金所用車両感知器据付工事

10.11.1 一 般

料金所用車両感知器据付工事は、料金所各レーンの通行車両台数を検出するための料金所用車両 感知器及びループコイルに係わる装置据付工事、装置間配線工事及び装置調整工事である。

10.11.2 ループコイルの埋設

ループコイルの埋設は、次の各号によって行わなければならない。

- (1) ループコイルは、路面舗装工事の終了後、舗装切断機を使用して路面を所定の寸法に切断し、 配線溝に埋設する。配線溝とループコイルとの隙間にはエポキシ樹脂モルタルを充てんし、仕 上げる。
- (2) ループコイルを舗装表層に埋設する場合は、ループコイル埋設後、黒色溶着式塗料で目地処理を行う。
- (3) ループコイル埋設箇所は、埋設工事終了後、埋設作業条件及び周囲温度等に応じた養生期間 を確保し、埋設箇所で剥離やひび割れ等が生じないように措置しなければならない。なお、ル ープコイル埋設箇所には、料金所アイランド部に埋設箇所を明記した位置表示を行う。

10.11.3 感知器の据付け

車両感知器の据付けは、10.3.3によるほか、次の各号によって行わなければならない。

- (1) 車両感知器は、検出対象レーンに隣接した料金所アイランド部の所定位置にアンカーボルト 類等により固定し、水平に据付ける。
- (2) 車両感知器を限定された狭い場所に他の装置と併設する場合は、あらかじめ現地において各 装置の配置間隔を保守点検作業に支障とならない範囲で設定し、埋込み配管及び基礎の位置出 しを行う。
- (3) 車両感知器の設置位置は、設置後雨天時等で走行車による汚損などの影響が受けにくい場所

に設置しなければならない。

10.11.4 配 線

車両感知器の配線は、次の各号によって行わなければならない。

- (1) ループコイルから車両感知器までの引出し配線は、料金所アイランド部分は、予め埋設した電線管による管内配線工事にて行う。
- (2) 車両感知器への電源配線は、料金所用分電盤の専用回路からの分岐配線とする。
- (3) 料金所用分電盤の車両感知器用分岐開閉器には、「料金所トラカン禁開放」の表示を行い併せて、回路の開閉が容易に行えないような措置を講じておかなければならない。

10.11.5 調整

車両感知器の調整は、10.3.7に準じて行わなければならない。

10.11.6 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 12 節 料金所用データ処理装置据付工事

10.12.1 一 般

料金所用データ処理装置据付工事は、料金所車両感知データを地区管理部に伝送し、料金所単位 に集計処理するための料金所用データ中央処理装置、親局情報伝送装置、子局情報伝送装置及び操 作盤に係わる装置据付工事、装置間配線工事及び装置調整工事を行う。

なお、工事の形態によっては、子局情報伝送装置及び操作盤の据付、配線及び調整工事にて実施 する場合がある。

10.12.2 装置の据付け

料金所用データ処理装置の据付けは、10.2.2によるほか、次の各号によって行わなければならない。

- (1) 子局情報伝送装置の設置場所は、集約料金所では管理所内の通信機械室とするが、入路料金 所にあっては、Ⅲ型ブースの機械室とする。
- (2) 子局情報伝送装置をⅢ型ブース機械室に設置する場合は、予め併設する他の装置等との間隔 を調査し、設置後の保守点検作業に支障が生じないように措置を講じておかなければならない。
- (3) 操作盤は、ブースの料金収受室のカウンター部で、収受員が容易に操作できるような位置に 据付けなければならない。

10.12.3 配 線

料金所用データ処理装置の配線は、10.2.3によるほか、次の各号によって行わなければならない。

- (1) ブース内に設置した子局情報伝送装置及び操作盤への配線は、ブース内の所定の端子盤から、 ダクト配線等、敷設場所に応じた工事方法によって敷設しなければならない。
- (2) 子局情報伝送装置への電源配線は、管理所内分電盤又はブース内分電盤の専用回路から分岐配線にて行う。
- (3) 上記の分電盤の子局情報伝送装置用分岐開閉器には、『料金所用データ伝送禁開放』の表示を行い併せて、回路の開閉が容易に行えないような措置を講じておかなければならない。

10.12.4 装置の調整

料金所用データ処理装置の調整は、単体調整及び総合調整とし、次の各号によって行わなければならない。

- (1) 装置単体調整は、料金所用データ中央処理装置、親局情報伝送装置、子局情報伝送装置及び操作盤及び料金所用車両感知器について、それぞれの装置に応じた方法で調整しなければならない。
- (2) 装置総合調整は、単体調整が終了した後に、料金所用データ中央処理装置、親局情報伝送装置、子局情報伝送装置、操作盤及び料金所用車両感知器を伝送回線で接続し、あらかじめ設定した一定時間、料金所で直接観測した数値及び車両感知器の計測データと料金所用データ中央処理装置が集計した車両通行台数及び業務交代回数について、精度を確認する。

なお、調整作業の分担は、工事範囲に応じて、あらかじめそれぞれの工事施工者間で調整を行っておくものとする。

10.12.5 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第11章 ETC設備工事

第 11 章 ETC設備工事

第1節 共通 事項

11.1.1 適用範囲

この章は、首都高速道路のETC設備に係わる工事に適用する。

11.1.2 工事の種類

ETC設備工事の種類は、下記に示すものとする。

- (1) ETC中央装置据付工事
- (2) 料金所ETC設備据付工事
- (3) フリーフローETC設備据付工事
- (4) カード未挿入お知らせアンテナ設備据付工事

11.1.3 個別調整及びシステム総合調整

ETC設備工事は、首都高速道路のETCシステムに係わる装置の新設及び改修工事であり、完成した装置は単独に運用されるものでなく、システムの中で有機的に運用される。このため、工事での調整は装置単独の調整と同時にシステムとしての総合調整が必要となる。ETC設備工事における個別調整及び総合調整は、次の各号によって行わなければならない。

- (1) 個別調整は、現地に据付けられた装置が、仕様どおりの機能を発揮させるために行う 調整作業で、次のようなものがある。
- イ 装置単体を電気的及び機械的な定格使用状態にさせる為の装置の単体調整
- ロ 複数の装置にて構成されたシステムが所定の機能を発揮させる為に、装置を単体調整した後に個々の装置を統合して行うシステムの機能調整
- ハ 親装置と端末装置及び 2 基以上の装置を対向又は連係した状態で使用する場合において、それぞれの装置を対向状態にさせて機能の調整を図る対向調整
- (2) 総合調整は、現地に据付けられた装置をETCシステムに組込んだ状態にて行う調整 作業で、ハードウェア調整とソフトウェア機能調整とがある。
- イ ハードウェア調整は、ETC設備工事における装置が、ETCシステムに組込まれた状態において電源系及び制御信号系の機能が一元的に実施できるように行う調整である。
- ロ ソフトウェア機能調整は、ETC設備工事における装置が、ETC設備工事に組込まれた状態において、ETC装置運用ソフトウェアのそれぞれの機能が仕様どおりに発揮できるようにするために行う最終的な調整作業である。

第 2 節 ETC中央装置据付工事

11.2.1 一 般

ETC中央装置据付工事は、首都高速道路のETCシステムの中央処理装置及び周辺装置

に係わる装置据付工事、装置間配線工事及び装置調整工事である。

11.2.2 ETC中央装置の据付け

ETC中央装置の据付けは、9.19.2 によるほか、次の各号によって行わなければならない。

- (1) ETC中央装置及び周辺装置は、所定の場所に、配置計画に基づき整然と配置し、かつ、他の装置及び壁面・柱面とは、保守点検が容易に行えるような間隔を保たなければならない。
- (2) ETC中央装置及び周辺装置は、設置場所に適合した方法にて耐震措置を講じなければならない。
- (3) 操作卓は、設置場所の形状、広さ及び操作性等を考慮して設置しなければならない。
- (4) 装置据付基礎架台は、装置間の配線方式に適合したものを選定しなければならない。
- (5) 装置の形状及び配置は、既存の装置がある場合は、その形状寸法及び配置に適合したものとし、将来の増設分を考慮したものとしなければならない。
- (6) 装置をラックに収容する場合は、将来の実装分を考慮した形状寸法のものとしなければならない。
- (7) 装置の表面パネル等を監視及び操作する場合は、その装置の方向及び操作スペース等 を考慮し、保守管理に支障が生じないようにしなければならない。

11.2.3 装置間の配線

装置間の配線は、次の各号によって行わなければならない。

- (1) 連結して設置する装置間の配線は、それぞれの端子部から所定のケーブルを装置内又はフリーアクセス部を経由し敷設する。
- (2) 配線に使用するケーブルは、所定の形状のものとし、配線経路によって変形が生じたり、外力の影響を受けないように余裕をもって整然と敷設しなければならない。
- (3) フリーアクセス内に配線する場合は、あらかじめ配線用途及び使用ケーブルの種別に 応じた配線経路を設定し、整然と敷設しなければならない。
- (4) 配線は、熱、じんあい、衝撃などが発生する場所を避けて行わなければならない。
- (5) 営業管理中央装置への電源配線は、無停電電源装置から所定の専用回路によって分岐 配線し、負荷電流及び電線こう長に適合した太さの低圧ケーブルを、金属管配線工事又は 敷設場所に応じた工事方法によって敷設しなければならない。

11.2.4 装置の調整

営業管理中央装置の調整は、中央装置に係わる調整と各種端末装置を含めた総合調整であり、次の各号によって行わなければならない。

(1) 中央装置単独調整は、中央装置据付及び装置間配線が終了した状態において、装置の

単体調整、機能調整を行い、仕様どおりの機能が発揮できるように調整しなければならない。

(2) 中央装置総合調整は、中央装置及び各種端末装置の据付工事及び各種配線工事が終了 した段階で実施する。中央装置総合調整の実施に当たって、あらかじめ各々の機能調整を 行い、それぞれの仕様に基づき、ETCシステムの運用に必要となる機能を確認するため に、中央装置と端末装置を一元化した状態で調整を行う。

なお、調整作業の分担は、工事範囲に応じて、あらかじめそれぞれの工事施工者間で調整を 行っておくものとする。

11.2.5 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 3 節 料金所ETC設備据付工事

11.3.1 一 般

料金所ETC設備据付工事は、ETC車両が料金所を通過する際、無線通信を利用することにより、一旦停止することなく、自動的に通行料金の支払い手続きを可能とする端末装置の装置据付工事、装置間配線工事及び装置調整工事である

11.3.2 装置の取付け

装置の取付けは、次の各号によって行わなければならない。

- (1) 装置の取付けは、所定の取付金物を使用し、自重、風圧、振動等によって落下が生じないように、堅固に固定しなければならない。
- (2) 装置の現地搬入及び据付作業は、作業場所の状態及び作業条件に適合した作業車両等により行い、作業場所の周辺に対する防護措置を講じなければならない。
- (3) 装置の設置場所は、点検作業や扉の開閉が容易に行え、振動、じんあい及び湿気が少ない場所としなければならない。
- (4) 設置後、装置等に大きな揺れがある場合、主任監督員に報告しなければならない。

11.3.3 配 線

配線は、次の各号によって行わなければならない。

- (1) 配線は、所定の位置に整然と敷設しなければならない。
- (2) 装置間の配線は、11.2.3 に準じて行うものとする。

11.3.4 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 4 節 フリーフローETC設備据付工事

11.4.1 一 般

フリーフローETC設備据付工事は、ETC車両が入口料金所を通過したときETC処理された車両器及びICカードに対し、出口等で入口情報を元に課金処理を行うフリーフローETC装置の装置据付工事、装置間配線工事及び装置調整工事である

11.4.2 装置の取付け

装置の取付けは、11.3.3に準じて行わなければならない。

11.4.5 配 線

配線は、11.3.4に準じて行わなければならない。

11.4.6 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

第 5 節 カード未挿入お知らせアンテナ設備据付工事

11.4.1 一 般

カード未挿入お知らせアンテナ設備据付工事は、路側に設置したアンテナと車両に取付けられた車載器との間において無線通信を行うことにより、車載器が I Cカードを認識していない場合、路側アンテナから車載器へ車載器指示情報により IC カード未挿入である情報を回答する。その結果として I Cカードが挿入されていない、又は、認識されていないことを車載器が利用者に通知するための路側アンテナ装置の装置据付工事、装置間配線工事及び装置調整工事である。

11.5.3 装置の取付け

装置の取付けは、11.3.3に準じて行わなければならない。

11.5.4 配 線

配線は、11.3.4に準じて行わなければならない。

11.5.5 接 地

接地工事は、第9章 第18節 通信用接地工事に準じて行わなければならない。

資料編

資料 各技術者等の選定及び兼任表

						兼任の可否													
本人に対する他の技術者等技術者等として選定された本人													照査	管理	設計管理				
					施工管理				安全管理				実施設計 済み工事		実施設計 付き工事				
	管理種類	名 称	技術者等の所属	選定人数	当社へ各選定通知書による通知の要否	現場代理人	主任技術者又は監理技術者	専門技術者	専任技術者	総括安全衛生監理者	統括安全衛生責任者	元方安全衛生管理者	元方安全衛生管理代理者	照查担当主任技術者	照查担当技術者	管理技術者	照查技術者	担当技術者	
		現場代理人	元請負者	1人	必要		0	0	0	×	0	X	×	0	0	0	0	X	
	主任技術者又は (専任)	主任技術者又は監理技術者 (専任)	元請負者	1人	必要	0		0	0	×	Δ	X	X	0	0	0	0	X	
施工管理	I.	専門技術者 (専任)	元請負者	複数人	必要	0	0		0	X	Δ	X	X	0	0	0	0	X	
	管 理		下請負者	複数人	不要	X	×		0	×	×	×	×	×	×	×	X	X	
		専任技術者 (常駐)	元請負者	複数人	必要	0	0	0	\setminus	×	Δ	×	×	0	0	0	0	X	
			下請負者	複数人	必要	X	×	0		×	×	X	×	×	×	X	X	X	
		総括安全衛生監理者	元請負者	1人	必要	X	X	X	X		×	X	X	×	X	X	X	X	
	安	· 統括安全衛生責任者	元請負者	1人	必要	0	Δ	Δ	Δ	×	\setminus	×	×	Δ	Δ	Δ	Δ	X	
	安全管理	(常駐)	混在工事の 他の元請負者	1人	必要	X	X	X	X	X		X	X	×	X	X	X	X	
	理	元方安全衛生管理者 (専任)	元請負者	1人	必要	X	X	X	X	X	X		X	X	X	X	X	X	
		元方安全衛生管理代理者 (常駐)	元請負者	1人	必要	X	X	X	×	X	X	X		X	X	X	X	X	
管	実済 施み	照查担当主任技術者	元請負者	1人	必要	0	0	0	0	X	Δ	X	X		X	X	X	X	
	型 エ	照查担当技術者	元請負者	1人	必要	0	0	0	0	X	Δ	X	X	X		X	X	Χ	
計管	夷付 施き 設工	管理技術者	元請負者	1人	必要	0	0	0	0	X	Δ	X	X	X	X		X	X	
		照查技術者	元請負者	1人	必要	0	0	0	0	X	Δ	X	X	X	X	X		X	
理	計事	担当技術者	元請負者	複数人	必要	X	X	X	×	X	X	X	X	X	X	X	X		

○ : 各技術者等に必要とされる資格要件を満たすことによって兼任できる

△ : 現場代理人と兼任しており、各技術者等に必要とされる資格要件をみたすことによって兼任できる

× : 兼任できない